
Performance – From Backend To Frontend
Oxid Commons 2018

Kore Nordmann (@koredn)
14th June 2018



Hi, I’m Kore (@koredn)



Full Performance In The Mobile Age



Why Is It Complex?

2 articles
42.32 €Awesome Shop

Smartphone

1337,-- €
5 items in stock

 

Lorem ipsum dolor sit amet,
consectetur adipisicing elit,
sed do eiusmod tempor
incididunt ut labore et dolore
magna aliqua.

Comments

Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor.



Analyze Scenarios

What happens on your website?

I Scenarios in an Online Shop to cover all cases:
I Random browser
I User registration
I Logged in browser
I Checkout process
I ...

I Mind additional backend requests by JavaScript frontend
enhancements
I Page partials load or reload data from backend (services)



Complex User Interactions



Migrate To Frontend Components

I Requierements for user interactions get more complex
I Can be powered by Angular, React, Vue, ...
I Components usually still load their data themselves

I You could use a state library but this normally requires
backend refactoring

I All data is fetched on each page impression
I You could use local storage but this usually requires data

structure refactoring



Frontend Components

Benefits

I Complex user interactions are possible to handle

Drawbacks

I Server round trip on click still feels slow to user
I Storing data local storage requires complex synchronization

logic



Now: Single Page Applications (SPA)



Components in SPAs

2 articles
42.32 €Awesome Shop

Smartphone

1337,-- €
5 items in stock

 

Lorem ipsum dolor sit amet,
consectetur adipisicing elit,
sed do eiusmod tempor
incididunt ut labore et dolore
magna aliqua.

Comments

Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor.

REST /
GraphQL

Redux
Store

connect
(partials)



Migrate To Single Page Applications

I More JavaScript means new problems:
I Logging of JavaScript errors is now a must (Raven.js, Sentry,

...)
I Chunking your compiled JavaScript quickly becomes

neccessary

I Refactor data structures for in-browser view models
I Backends “only” deliver static assets and APIs – use HTTP2!



Backend APIs

I Backend For Frontend (BFF)
I Implement (REST) services optimizied for your frontend

requirements
I Best suited for fairly stable frontends with high performance

requirements
I GraphQL / ...

I Frontend may query any data, including complex joins
I Best suited for quickly changing frontend requirements
I “Any query” means that the backend might not be optimized for

a certain request type



SPAs

Benefits

I Very high user percieved performance
I Even a “quick” animation (115ms) is a lot time for a server to

fetch and prepare data
I Easier separation between backend and frontend

development

Drawbacks

I Requires sensible JavaScript build processes, monitoring, ...
I Ensure JavaScript performance is well enough on slow

devices (old phones)



Full Performance In The Mobile Age



Conclusion

I Always monitor server performance – maybe load test them
I SPAs will increase user percieved performance
I SPAs also enable modern user interactions




