
Stabile Software in volatilen Umgebungen
eCommerce Camp Jena

Kore Nordmann (@koredn / @qafoo)
March 17, 2017



Hi, I’m Kore (@koredn)



Well Aged Online Shop



Our Project

I Development worked like a charm
I Ressons to change something:

I New (security) release of shop software
I New feature requirements
I New scaling requirements→ Microservices



After just one change



Reasons For Slow Updates

I Changing APIs in vendor software
I Side effects (session, global scope, class scope) between

“modules”
I Wrong abstractions – not embracing the next change



Project Development

OK – what can we do?

I We aim for project lifetimes longer then three years
I We aim for fearless releases and upgrades
I We aim for consistently fast bug fixes and feature development



Design Stable Modules / Extensions

Business
Logic /
Domain

Minimal ExtensionUses DIC

Only Scalars,
& Domain Objects

Re
po

si
to

ry

Tests!

FacadeFa
ca

de

Facade



The Entry Point

I May be an ugly mess
I Must not contain logic, beside:

I Basic input conversion
I Exception handling
I Basic out preparation

I Access your Dependency Injection Container (Application
configuration) statically, if necessary

I Do not test with Unit Tests (unless it is a certification
requirement)



The Domain

I Separate between “Newables” (Data Objects) and
“Injectables” (Services)

I Only add “Eternal Truth” to Newables – all other logic goes
into Injectables

I No Newable may aggregate an Injectable
I No Injectable may aggregate an Newable – only use as

parameters



Finding The Domain (Branch By Abstraction)

Client Code

Client Code

Client Code

AbstractionNew
Implementation



Do Not Abstract (Embrace Chnage)

Split vertically instead of horizontally

I How much code can be re-used for that new user registration
through Facebook?

Usecase 1 Usecase 2

View

Controller

Services

Storage

Usecase 3 Usecase 4 Usecase 5



Do Not Abstract

I Never let fellow developers come up with technical
abstractions

I No custom Object Relational Mapper
I No custom Request, Routing
I No custom Form Handler
I No custom Configuration Handlers
I No custom Template Systems
I No custom Logger
I No custom . . .

I Use the amazing components which are out there and tested



Do Not Abstract

Your developers do not develop SproxWare



Summary

I Extract a framework independent domain
I Test your decoupled domain
I Sensible Domain Driven Design (just) consists of sensible

Domain Objects in 99% (no CQRS, no Event Sourcing, . . . )
I Embrace change
I Define an Extended Definition Of Done with design rules1

1https://qafoo.com/blog/097_extended_definition_of_done.html

https://qafoo.com/blog/097_extended_definition_of_done.html



