
PHP: Vom Entwicklerbaukasten zur Enterprise-Plattform
The Architecture Gathering

Kore Nordmann (@koredn)
13th October 2016

Hi, I’m Kore (@koredn)

A Brief History

I 1995: Set of Perl scripts by Rasmus
I 1998: PHP 3: Rewrite by Zeev & Andi (Zend)

I PHP: Hypertext Preprocessor
I C-like standard library

I 2000: PHP 4: Dedicated virtual machine (Zend Engine)
I 2004: PHP 5: Actual object model
I 2009: PHP 5.3: Sane garbage collection
I 2015: PHP 7: Massive performance improvements

No Excuses – But Growing Up Can Be Hard

Evolution Of PHP

I Mixing paradigmes since 1995
I Procedural from the beginning
I Structs with functions since PHP 4
I Object Orientation since PHP 5
I We even got goto (since PHP 5.3)

I Horrible inconsistencies in standard library
I str split() vs. strlen() vs. htmlspecialchars decode()

vs. IntlBreakIterator implements Traversable

How can PHP power 80%1 of the web?

1https://w3techs.com/technologies/overview/programming_language/all

https://w3techs.com/technologies/overview/programming_language/all

Attack Of The Clones

There was nothing else in 2000 (except Perl)

I But then there was:
I Ruby On Rails
I Django & Zope (Python)
I ASP.net
I Java Server Faces
I ...

How can PHP still power 80% of the web?

It Is Not About The Language

Syntax &
 Paradigm

Standard Library

Libraries, Products

Virtual Machine

Tooling

Developers, Documentation & Education

It Is Not About The Language

How does PHP power 80% of the web?

Where Is PHP Used?

Architecture: It’s All Tradeoffs

Availability Modifiability

Performance Security

Performance

Where Is PHP Used?

Number Crunching 2

Language CPU Slower Version
C++ (-O2) 0.973s – g++ 6.1.1
Java 8 (non-std lib) 1.126s 15% 1.8.0 102
Python 2.7 + PyPy 1.514s 55% PyPy 5.4.0
Go 2.757s 183% 1.7
C++ (not optimized) 2.954s 203% g++ 6.1.1
PHP 7.0 6.739s 592% 7.0.10
Javascript (nodejs) 7.202s 639% 4.3.1
Java 8 (see notes) 12.200s 1,153% 1.8.0 102
Ruby 13.147s 1,250% 2.3.1
Python 3.5 17.895s 1,738% 3.5.2
Python 2.7 23.691s 2,334% 2.7.12
Perl 25.562s 2,526% 5.22.2
PHP 5.6 68.784s 6,020% 5.6.17

2https://blog.famzah.net/2016/09/10/
cpp-vs-python-vs-php-vs-java-vs-others-performance-benchmark-2016-q3/

https://blog.famzah.net/2016/09/10/cpp-vs-python-vs-php-vs-java-vs-others-performance-benchmark-2016-q3/
https://blog.famzah.net/2016/09/10/cpp-vs-python-vs-php-vs-java-vs-others-performance-benchmark-2016-q3/

Single Node Performance

I Performance does not match compiled code or good VMs
I Basically no support for threads

I Experimental async I/O support: ReactPHP3 (still
single-threaded, like node.js)

I “Experimental” threading support4

I Only basic support for forks5

Do not use.

3http://reactphp.org/

4https://pecl.php.net/package/pthreads

5http://docs.php.net/pcntl

http://reactphp.org/
https://pecl.php.net/package/pthreads
http://docs.php.net/pcntl

Horizontal Scalability

HTTP / REST Are Built For Scalability 6

LCoDC$SS

PHPs Shared Nothing Architecture

6https://www.ics.uci.edu/˜fielding/pubs/dissertation/top.htm

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

HTTP / REST Are Built For Scalability 6

Layered Code on Demand Client Cached
Stateless Server

PHPs Shared Nothing Architecture

6https://www.ics.uci.edu/˜fielding/pubs/dissertation/top.htm

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

PHP Is Built For Shared Nothing

Apache /
PHP-FPM

M_INIT()

M_SHUTDOWN()

R_INIT()

R_SHUTDOWN()

PHP

Script
execution

Pattern: Sessions

Pattern: Binary Data

Pattern: Offline Jobs

Summary

I PHP applications are usually scaled to multiple application
servers from the very beginning

I Developers know the challenges and frameworks embrace
them

I Servers are usually commodity hardware
I Do not use for:

I Application Servers with shared object graph (Node.js?, Java,
. . .)

I WebSockets (Node.js?, Go, Erlang/OTP, Java, . . .)
I Number Crunching (C, C++, Go, Java, . . .)

Security

Security

I “No” issues here
I Issues were caused by default configurations leading to stupid

code
I Issues are caused by unaware developers

I Maybe related to weak dynamically typed language

I It is not trivial to write insecure code with modern
frameworks. . .

Low entry barrier is a double–edged sword. . .

Availability

Availability

I Horizontal scaling with shared nothing
I Everything else must be highly available, too

I Resilience
I “NullPointer exceptions” are finally catchable since PHP 7

(almost all errors are)
I Management processes basically do not die
I Just throw away unstable servers

I Server provisioning is the default (Ansible, Puppet, Chef, . . .)

I Monitoring
I Error monitoring with libraries like Monolog7

I Application performance and error metrics with Tideways,
NewRelic, AppDynamics, . . .

7https://github.com/Seldaek/monolog

https://github.com/Seldaek/monolog

Modifiability

Modifiability

I Hackability
I (I think) The reason Wordpress is as big as it is. . .
I . . . like it or hate it – double-edged sword again.

I Trivial deployments
I Just put new source on server and change link to new source

directory. . .
I Maybe tell opcode-cache, if fstat is disabled

I Tooling
I Composer8: Sane dependency management
I PHPStorm9: IDE with all the bits

8https://getcomposer.org

9https://www.jetbrains.com/phpstorm/

https://getcomposer.org
https://www.jetbrains.com/phpstorm/

Quality Assurance

I PHPUnit: (Unit) Tests with PHPUnit are default for “all”
libraries

I PHPMD: Mess detector exposes the common violations
(coupling, size, complexity, . . .)

I PHP CodeSniffer: Verification of codings standards (PSR-2)
I PHPCS: Detects copy-pasted code
I Build Systems: Phing (ant), Phake, . . .
I CI: TravisCI for Open Source, Jenkins, ContinuousPHP, . . .
I . . .

We Are Watching

Anatomy Of An Enterprise PHP Application

LoadBalancer
(Round Robin)

Binary Storage
(NFS, S3)

Session & Application
Cache (Redis)

Database
(MySQL)

(Micro)Service
(Any Tech)

Database
(Any)

Queue
(RabbitMQ)

Worker
(Any Tech)

Relax

PHP

Ask Anything. . .

