
Evolution Of Web Application Architecture
PHP Unconference Europe 2016

Kore Nordmann (@koredn)
29th May 2016

Hi, I’m Kore

Architecture

Evolution

Too many visitors

CC BY 2.0 Scott Cresswell – https://flic.kr/p/knkntv

https://flic.kr/p/knkntv

Evolution

Evolution

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Lessons Learned: Load Balancing

I Works because of HTTP & PHP
I HTTP is LCoDC$SS
I PHP is build for shared-nothing

I Round Robin works best
I Sticky sessions will overload certain servers

Non sticky session
– how?

CC BY 2.0 DJ Bustos – https://flic.kr/p/rLfXoR

https://flic.kr/p/rLfXoR

Evolution

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Lessons Learned: Non-Sticky Session

I Put session on memcached / Redis
I Mostly trivial because of existing extensions

Where to put the
static data?

CC BY 2.0 Richard – https://flic.kr/p/joASfQ

https://flic.kr/p/joASfQ

Evolution

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Lessons Learned: Static Files

I NFS will eventually lead to dead locks
I . . . still seems the most popular solution around.

I Multiple domains can hurt performance (TCP slow start)
I Using dedicated CDN providers can help

I Content locality

Database servers
too slow…

CC BY 2.0 super awesome – https://flic.kr/p/75LH5i

https://flic.kr/p/75LH5i

Evolution

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Lessons Learned: Replicate Database

I Master Slave Replication is fairly easy to set up
I Obviously only scales READs
I WRITEs are usually not your first problem

Database servers
too expensive…

CC BY-SA-NC 3.0 Kore Nordmann

Evolution

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Lessons Learned: Cache With Memcache

I Cache all the things in memory
I Cache entities
I Cache collections
I Full page cache

I Cache invalidation is hard
I Cache dependency calculation
I The paging problem

Too many writes

CC BY 2.0 Drew Coffman – https://flic.kr/p/8kvbSL

https://flic.kr/p/8kvbSL

Evolution

Sharding

I Split tables across multiple
nodes

I Vertical sharding
I Shard by consistent

hashing
I Horizontal sharding

product

user

…

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Lessons Learned: Sharding

I Shard by table
I . . . or even shard by consistent hash per entity

I No referential integrity checking
I Queries are limited to sharding solution
I Schema updates across multiple shards are fun

Setup too complex

CC BY 2.0 KellarW – https://flic.kr/p/rqJYiZ

https://flic.kr/p/rqJYiZ

Evolution

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Lessons Learned: NoSQL

I Usually solves one problem really well:
I Sharding
I Multi-Master-Replication
I Cross-shard queries

I Usually omits:
I SQL
I Referential Integrity

I . . . we lost all relevant features from
Relational Database Management Systems
anyways. . .

Keeping data consistent
across multiple nodes

CC BY 2.0 Beraldo Leal – https://flic.kr/p/56UqaR

https://flic.kr/p/56UqaR

Data Consistency Across Nodes

?

✓?
???

Eventual Consistency

Truth Client
Updater /
Replicator

Last Revision?

<hash>

Get Updates Since <hash>

{update, revision}[]
{update, revision}[]

null

Revisions MUST
increment

strictly monotonic

Revisions MUST NOT
be stored if an
update fails.

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Lessons Learned: Data Consistency

I Embrace Eventual Consistency
I Compaction is hard
I Data migrations are hard

Business wants to
query data

CC BY 2.0 anton petukhov – https://flic.kr/p/rCGQp6

https://flic.kr/p/rCGQp6

Evolution

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Lessons Learned: Map-Reduce

I Execute queries on distributed databases
I New query language to learn

I Your developers write analysis scripts, instead of the business
analysts writing slow SQL queries

How to orchestrate?

CC BY 2.0 Frederik Magle Music – https://flic.kr/p/bGW2Pv

https://flic.kr/p/bGW2Pv

Evolution

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Lessons Learned: Queues

I Queues can ensure data is processed asynchronously
I Data consistency must be ensured even when pushing into

queues
I Following the data flow of an action can be “tricky”

I Used to distribute data between systems

Evolution

Microservices

Apply Seperation of Concerns on service level to allow
for seperate teams & technologies per concern.

I Microservices can simplify things:
I Choose optimal technology stack per team & concern

I Microservices will also complicate things:
I Automated deployment is a must
I Service orchestration is still a problem
I Service downtimes and latency must be handled gracefully

(Eventual Consistency)

I Big DataTM will stay a problem
I Sensible services are often not micro any more. . .

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Lessons Learned (subjective)

I Boring technology choices will often work best
I Just start & stay with LAMP?

I Only bring in shiny new technologies with care
I There are enough reasons to eventually do that, though

The Hipster Says:

*

* Except you evaluated
 it as the correct solution
 for your case

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Conclusion

I There are many developers, documentation & experience for
boring technologies

I Evaluate before adding new technologies (ATAM)
I Do not jump on every bandwagon – this includes

microservices
I Data Consistency accross nodes is hard &

important

