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Lessons Learned: Load Balancing

I Works because of HTTP & PHP
I HTTP is LCoDC$SS
I PHP is build for shared-nothing

I Round Robin works best
I Sticky sessions will overload certain servers



Non sticky session
– how?
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Lessons Learned: Non-Sticky Session

I Put session on memcached / Redis
I Mostly trivial because of existing extensions



Where to put the
static data?
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Lessons Learned: Static Files

I NFS will eventually lead to dead locks
I . . . still seems the most popular solution around.

I Multiple domains can hurt performance (TCP slow start)
I Using dedicated CDN providers can help

I Content locality



Database servers
too slow…
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Lessons Learned: Replicate Database

I Master Slave Replication is fairly easy to set up
I Obviously only scales READs
I WRITEs are usually not your first problem



Database servers
too expensive…
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Lessons Learned: Cache With Memcache

I Cache all the things in memory
I Cache entities
I Cache collections
I Full page cache

I Cache invalidation is hard
I Cache dependency calculation
I The paging problem



Too many writes

CC BY 2.0 Drew Coffman – https://flic.kr/p/8kvbSL

https://flic.kr/p/8kvbSL


Evolution



Sharding

I Split tables across multiple
nodes

I Vertical sharding
I Shard by consistent

hashing
I Horizontal sharding

product

user

…
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Lessons Learned: Sharding

I Shard by table
I . . . or even shard by consistent hash per entity

I No referential integrity checking
I Queries are limited to sharding solution
I Schema updates across multiple shards are fun



Setup too complex
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Lessons Learned: NoSQL

I Usually solves one problem really well:
I Sharding
I Multi-Master-Replication
I Cross-shard queries

I Usually omits:
I SQL
I Referential Integrity

I . . . we lost all relevant features from
Relational Database Management Systems
anyways. . .



Keeping data consistent
across multiple nodes
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Data Consistency Across Nodes

?

✓?
???



Eventual Consistency

Truth Client
Updater /
Replicator

Last Revision?

<hash>

Get Updates Since <hash>

{update, revision}[]
{update, revision}[]

null

Revisions MUST
increment

strictly monotonic

Revisions MUST NOT
be stored if an
update fails.
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Lessons Learned: Data Consistency

I Embrace Eventual Consistency
I Compaction is hard
I Data migrations are hard



Business wants to
query data
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Lessons Learned: Map-Reduce

I Execute queries on distributed databases
I New query language to learn

I Your developers write analysis scripts, instead of the business
analysts writing slow SQL queries



How to orchestrate?
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Lessons Learned: Queues

I Queues can ensure data is processed asynchronously
I Data consistency must be ensured even when pushing into

queues
I Following the data flow of an action can be “tricky”

I Used to distribute data between systems
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Microservices

Apply Seperation of Concerns on service level to allow
for seperate teams & technologies per concern.

I Microservices can simplify things:
I Choose optimal technology stack per team & concern

I Microservices will also complicate things:
I Automated deployment is a must
I Service orchestration is still a problem
I Service downtimes and latency must be handled gracefully

(Eventual Consistency)

I Big DataTM will stay a problem
I Sensible services are often not micro any more. . .
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Lessons Learned (subjective)

I Boring technology choices will often work best
I Just start & stay with LAMP?

I Only bring in shiny new technologies with care
I There are enough reasons to eventually do that, though



The Hipster Says:

*

* Except you evaluated
   it as the correct solution
   for your case
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Conclusion

I There are many developers, documentation & experience for
boring technologies

I Evaluate before adding new technologies (ATAM)
I Do not jump on every bandwagon – this includes

microservices
I Data Consistency accross nodes is hard &

important




