
Wie Wir Code Analysieren
SymfonyLive Cologne 2016

Kore Nordmann (@koredn)
29. April 2016

Hi, I’m Kore (@koredn)

Metrics

Analyze Progress

Analyze Legacy Code

Metrics

What to find?

What do I want to find?

I Important Code
I Potentially buggy code
I Badly tested code
I Design violations

Important, buggy & untested code!

Finding The Core

Code Rank

uses

extends

implements

uses
uses

extends

uses

Entity

ExtendedService

Service

ExtendedRepo

Command

Repository

Interface

Code Rank

I Googles PageRankTMfor classes!
I Maps software to a graph

I A node (π) for each software artifact
I Package or Class

I An edge (ρ) for each relation
I Inheritance, Call, Parameter, Exceptions, Construction

I CodeRank:

CR(πi) =
∑

r

r((1 − d) + d
∑

r

r(CR(πr)/ρr))

Code Rank

Demo time

http://stuff.qafoo.com/symfony

http://stuff.qafoo.com/symfony

Reverse Code Rank

Shows fragile code

(Just reverse all edges)

Reverse Code Rank

Demo time

http://stuff.qafoo.com/symfony

http://stuff.qafoo.com/symfony

Qafoo Quality Analyzer

Qafoo Quality Analyzer

I “Just” visualizes metrics
I Get it: https://github.com/Qafoo/QualityAnalyzer

1 $. / phpuni t −−log− j u n i t j u n i t . xml −−coverage
−c love r c love r . xml

2 $ analyze [−−coverage= c love r . xml −− t e s t s =
j u n i t . xml] −−exclude=Tests analyze src /

3 Analyze source code i n / path / to / symfony / src /
4 ∗ Running source
5 ∗ Running coverage
6 ∗ Running pdepend
7 ∗ Running dependencies
8 ∗ Running phpmd
9 ∗ Running checks ty le

10 ∗ Running t e s t s
11 ∗ Running cpd
12 ∗ Running phploc
13 Done
14 $ analyze serve
15 S t a r t i n g webserver on h t t p : / / l o c a l h o s t :8080/
16 $ analyze bundle symfony
17 $ scp − r symfony / qafoo−web : s t u f f / htdocs /

https://github.com/Qafoo/QualityAnalyzer

Where Will Be The Bugs?

Complexity metrics

I Bugs are often introduced where code is hard to understand
I Control structures introduce complexity

I if, elseif, for, while, foreach, catch, case, xor, and, or,
&&, ||, ?:

I Cyclomatic Complexity (CCN)
I Number of branches

I NPath Complexity
I Number of execution paths
I Minds the structure of blocks

Cyclomatic Complexity

1 <?php
2 class Foo {
3 public function foo () {
4 i f ($x) { }
5 i f ($y) { }
6 i f ($z) { }
7 return $x ;
8 }

9 }

σ

CCN: 01234

if($x) if($y) if($z)

NPath Complexity

1 <?php
2 class Foo {
3 public function foo () {
4 i f ($x) { }
5 i f ($y) { }
6 i f ($z) { }
7 return $x ;
8 }

9 }

σ

NPath: 08

if($x)

if($y)
false

if($y)
true

if($z)

false

if($z)

true

if($z)

false

if($z)

true

true

false true

false true

false true

false

Sensible limits

I Numbers do not tell anything by themselves
I Cyclomatic Complexity

I 1-4: low, 5-7: medium, 8-10: high, 11+: hell
I NPath Complexity

I 200: critical mass

I Limiting values are at your discretion

Complexity

Demo time

http://stuff.qafoo.com/symfony

http://stuff.qafoo.com/symfony

What Should Be Tested?

How many tests do I need?

I 100% Line Converage?
I Shows which lines have not been executed (by tests)

I Path Converage (been worked on)
I Shows which execution paths have been covered
I Write $nPath tests for every method?

I Parameter Value Coverage
I Test all execution paths with sane boundary values for every

parameter
I Common integer boundaries: −263,−231,−1, 0, 1, 231, 263

I Write at least $nPath ∗ $parameterCount ∗ $boundaries tests
per method!

Better combine metrics: CRAP

Is your code CRAP?

CRAP(m) =

ccn(m)2 + ccn(m), if cov(m) = 0
ccn(m), if cov(m) ≥ .95
ccn(m)2 ∗ (1 − cov(m))3 + ccn(m), else

I Change Risk Anti Patterns

I ccn(m) – Cyclomatic complexity of a method
I cov(m) – Line coverage of a method

Tests

Demo time

http://stuff.qafoo.com/symfony

http://stuff.qafoo.com/symfony

What is Coupled?

Composition

Are there any misbheaving entities?

Object Oriented Systems

MyObject
SomeTool

Config

WhatEver

uses

+do(Foo)

Foo

accepts

Result creates

Exception

throws

Artifact

I Package (Namespace)
I Class
I Method

Coupling

I Excessive coupling is one of the key problems
I Dependencies between artifacts are established by:

I Object instantiations
I Static method calls
I Method parameters
I Thrown and catched exceptions

I (High) Efferent Coupling CE (outgoing dependencies)
I Artifact relies on a lot of code
I Artifact tends to be unstable
I Also called “Coupling Between Objects” (CBO)

I (High) Afferent Coupling CA (incoming dependencies)
I A lot of code relies on artifact
I Artifact should be really stable

Code Rank

Code Rank

I Direct and indirect CA (incoming dependencies)

Reverse Code Rank

I Direct and indirect CE (outgoing dependencies)

Coupling

Demo time

http://stuff.qafoo.com/symfony

http://stuff.qafoo.com/symfony

Final Notes

There are valid reasons behind every line of code

I You might not know or understand the reasons
I Code should be easy to understand – but not every line you

do not understand is bad
I Be empathic
I Be gentle

Summary

I The Bad
I It is not hard to trick metrics
I It is easy to get dogmatic about metrics

I The Good
I Metrics allow us to locate problematic code
I Metrics allow for objective discussions about code –

intepretetions are still subjective.
I Finding this code is the base for refactorings, discussions &

even rewrites

