
Eventual Consistency – Data Model Implications
Open Tech School

Kore Nordmann / @koredn / <kore@qafoo.com>
June, 11th 2015

The Usecase

xx xx

Solutions

I Transactions
I Write is only ACK’d if all nodes ACK’d

I Not possible if nodes do not ACK properly (Solr, MongoDB,
ElasticSearch, . . .)

I Two / three phase commits take time. . .
I Rollback and deny writes entirely if one node does not ACK

I Omitted rollback requires full-sync
I Requires re-transmitting all data
I Checking which IDs are transmitted requires iterating all IDs

I Eventual Consistency

CAP Theorem

Availability Partition
tolerance

Consistency

Eventual
Consistency

TransactionsNo
Option

Eventual Consistency

Sounds good – but how?

Eventual Consistency

Source Target
Updater /
Replicator

Last Revision?

<hash>

Get Updates Since <hash>

{update, revision}[]
{update, revision}[]

null

Revisions MUST
increment

strictly monotonic

Revisions MUST NOT
be stored if an
update fails.

Data Modelling on Source

I Store denormalized “updates”
I Revision (globally strictly monotonic)
I Store denormalized data
I Keep deletes

I Maintaining referential integrity is hard – but not impossible

CouchDB – Multi Master

Source Target
Updater /
Replicator

Get Replication Status

<lastUpdate>

Replication status
is stored for all
known replication
endpoints

Get Changes Since

<updateIds>

Receive list of
changes;

Feed can be
continuous

Get Revision Diff

<diff>

Same documents
might already be
updated on target

Get Documents

<updates>

Get documents
including revision

tree and
all revisions

Post Updates

<status>

Do not create
a new revision
on write

CouchDB – Merging

ChinaGermany

Brazil

The Great Firewall

1 2

1 2

1

Relation Modelling

Array of:
↻ ↻

Simpel JOIN Query

1 function (doc) {
2 i f (doc . type === ” b log pos t ”) {
3 emit ([doc . i d] , nul l) ;
4 }

5
6 i f (doc . type === ” blog comment ”) {
7 emit ([doc . b l og pos t i d , doc . date] ,

nul l) ;
8 }

9 }

1 ? s ta rkey =[” post ”]& endkey =[” post ” , { }]
2
3 [” post ”] => nul l
4 [” post ” , ” 2015−06−11 13:23 ”] => nul l
5 [” post ” , ” 2015−06−11 13:37 ”] => nul l
6 [” post ” , ” 2015−06−11 13:42 ”] => nul l

Implications

I Split data into small documents
I . . . depending on how often data changes

I Reference parent, not children
I A blog post referencing its comments, vs. . . .
I comments referencing their blog post.

Summary

I Embrace Eventual
Consistency

I Play with
http://hood.ie/

http://hood.ie/

