
Keeping Distributed Systems in Sync
International PHP Conference

Kore Nordmann / @koredn / <kore@qafoo.com>
June 9th, 2015

The Usecase

xx xx

A Simpler Usecase

fsync fsync

TCP/IPx
x x
· No Connection
· Connection Timeout
· Connction loss during answer
· …

· Hard disk failure
· Server crash
· Malfunctioning disk / raid controller
· …

Solutions

I Transactions
I Write is only ACK’d if all nodes ACK’d

I Not possible if nodes do not ACK properly (Solr, MongoDB,
ElasticSearch, . . .)

I Two / three phase commits take time. . .
I Rollback and deny writes entirely if one node does not ACK

I Omitted rollback requires full-sync
I Requires re-transmitting all data
I Checking which IDs are transmitted requires iterating all IDs

I Eventual Consistency

CAP Theorem

Availability Partition
tolerance

Consistency

Eventual
Consistency

TransactionsNo
Option

Eventual Consistency

Sounds good – but how?

Eventual Consistency

Source Target
Updater /
Replicator

Last Revision?

<hash>

Get Updates Since <hash>

{update, revision}[]
{update, revision}[]

null

Revisions MUST
increment

strictly monotonic

Revisions MUST NOT
be stored if an
update fails.

Eventual Consistency

That’s all?

No.

Replicator Implementation

I Implement as a dedicated process (daemon, cronjob, . . .)
I Can be implemented in PHP – we also have an Go

implementation
I Protocol:

I We used JSON-RPC and XML-RPC, but does not matter
I Caching makes no sense and a single endpoint URL simplifies

integration
I In a basic implementation it just dispatches RPC messages

I Sharding, logging, request signing are optional, but sensible

Replicator Implementation

1 public function r e p l i c a t e ($channel , Endpoint $source , Endpoint $ ta rge t)
2 {

3 /∗ @var Resul t $ lastUpdate ∗ /
4 $lastUpdate = $targe t −>execute (
5 new Command(’ las tUpdate ’ , $channel)
6) ;
7
8 /∗ @var Resul t $updates ∗ /
9 $updates = $source−>execute (

10 new Command(’ updates ’ , $channel ,
11 ar ray (
12 ’ s ince ’ => $lastUpdate−>payload [’ r e v i s i o n ’] ,
13)
14)
15) ;
16
17 $targe t −>execute (
18 new Command(’ r e p l i c a t e ’ , $channel ,
19 $updates−>payload
20)
21) ;
22 }

Replicator Implementation

I Endpoint will encode & send the command to the current
endpoint

I By default Endpoint\JsonRPC, but could also be
Endpoint\Solr

I Command – simple data object containing:
I $method
I $channel
I $payload

I Result – simple data object containing:
I $ok
I $payload

Data Modelling on Source

I Store denormalized “updates”
I Revision (globally strictly monotonic)
I Store full data
I Keep deletes

I Maintaining referential integrity is hard – but not impossible

Replicator Scaling

I With large replication batches:
I Use limit to reduce batch size
I Use compaction (vacuum)

I With many targets:
I Run separate processes / threads per target / target group
I Reduce replication rate and volume for erroneous targets

Replication Status

Changes on Source

23

Replicator request:
lastUpdate=23
limit=10

Other Tools

I Same mechanism can be found in:
I Binary logs (MySQL, . . .)
I Solr replication
I CouchDB replication

Scale It

xx xx

Summary

I Embrace Eventual Consistency
I Transactional consistency with your search index does not

work nor is required

I Implementation is more trivial then continuously checking
consistency

