
A CouchDB Replication Endpoint in PHP
FrOSCon 2014

Kore (@koredn / kore@apache.org)
August 23rd, 2014



The Idea



The Idea



The Idea



The Idea

♲



The Idea

♲
PHP



The Idea

♲
PHP



Implementations

I Client
I PouchDB
I Hood.ie
I TouchDB

I Server
I Apache CouchDB
I Cloudant
I PouchDB Server
I Replipy (Python)

I Replicator
I Replicate (JavaScript)
I Replipy (Python)



Use Cases

I Make your (PHP)-App offline-capable
I Replicate your MySQL-DB into a CouchDB (or vice versa)
I Adapt data before syncing to mobile



Use Cases

I Make your (PHP)-App offline-capable
I Replicate your MySQL-DB into a CouchDB (or vice versa)
I Adapt data before syncing to mobile



Use Cases

I Make your (PHP)-App offline-capable
I Replicate your MySQL-DB into a CouchDB (or vice versa)
I Adapt data before syncing to mobile



Outline

Replication Protocol

Implementation



Single Source of Truth

Truth Client
Updater /
Replicator



Single Source of Truth

Truth Client
Updater /
Replicator

Last Revision?

<hash>



Single Source of Truth

Truth Client
Updater /
Replicator

Last Revision?

<hash>

Get Updates Since <hash>

{update, revision}[]



Single Source of Truth

Truth Client
Updater /
Replicator

Last Revision?

<hash>

Get Updates Since <hash>

{update, revision}[]
{update, revision}[]

null



Single Source of Truth

Truth Client
Updater /
Replicator

Last Revision?

<hash>

Get Updates Since <hash>

{update, revision}[]
{update, revision}[]

null

Revisions MUST
increment

strictly monotonic

Revisions MUST NOT
be stored if an
update fails.



CouchDB (simplified)

Source Target
Updater /
Replicator



CouchDB (simplified)

Source Target
Updater /
Replicator

Get Replication Status

<lastUpdate>

Replication status
is stored for all
known replication
endpoints



CouchDB (simplified)

Source Target
Updater /
Replicator

Get Replication Status

<lastUpdate>

Replication status
is stored for all
known replication
endpoints

Get Changes Since

<updateIds>

Receive list of
changes;

Feed can be
continuous



CouchDB (simplified)

Source Target
Updater /
Replicator

Get Replication Status

<lastUpdate>

Replication status
is stored for all
known replication
endpoints

Get Changes Since

<updateIds>

Receive list of
changes;

Feed can be
continuous

Get Revision Diff

<diff>

Same documents
might already be
updated on target



CouchDB (simplified)

Source Target
Updater /
Replicator

Get Replication Status

<lastUpdate>

Replication status
is stored for all
known replication
endpoints

Get Changes Since

<updateIds>

Receive list of
changes;

Feed can be
continuous

Get Revision Diff

<diff>

Same documents
might already be
updated on target

Get Documents

<updates>

Get documents
including revision

tree and
all revisions



CouchDB (simplified)

Source Target
Updater /
Replicator

Get Replication Status

<lastUpdate>

Replication status
is stored for all
known replication
endpoints

Get Changes Since

<updateIds>

Receive list of
changes;

Feed can be
continuous

Get Revision Diff

<diff>

Same documents
might already be
updated on target

Get Documents

<updates>

Get documents
including revision

tree and
all revisions

Post Updates

<status>

Do not create
a new revision
on write



CouchDB

Eventual-Consistent
Multi-Master Replication

over HTTP



Outline

Replication Protocol

Implementation



How To Test?

1. Record real replication (mitmdump)

2. Replay in integration tests against own endpoint

3. Replace Dates and random IDs in requests and responses

4. Fix failures

5. Understand & Refactor & Document

I http://mitmproxy.org/doc/mitmdump.html

I https://github.com/Kagency/http-replay

http://mitmproxy.org/doc/mitmdump.html
https://github.com/Kagency/http-replay


How To Test?

1. Record real replication (mitmdump)

2. Replay in integration tests against own endpoint

3. Replace Dates and random IDs in requests and responses

4. Fix failures

5. Understand & Refactor & Document

I http://mitmproxy.org/doc/mitmdump.html

I https://github.com/Kagency/http-replay

http://mitmproxy.org/doc/mitmdump.html
https://github.com/Kagency/http-replay


How To Test?

1. Record real replication (mitmdump)

2. Replay in integration tests against own endpoint

3. Replace Dates and random IDs in requests and responses

4. Fix failures

5. Understand & Refactor & Document

I http://mitmproxy.org/doc/mitmdump.html

I https://github.com/Kagency/http-replay

http://mitmproxy.org/doc/mitmdump.html
https://github.com/Kagency/http-replay


How To Test?

1. Record real replication (mitmdump)

2. Replay in integration tests against own endpoint

3. Replace Dates and random IDs in requests and responses

4. Fix failures

5. Understand & Refactor & Document

I http://mitmproxy.org/doc/mitmdump.html

I https://github.com/Kagency/http-replay

http://mitmproxy.org/doc/mitmdump.html
https://github.com/Kagency/http-replay


How To Test?

1. Record real replication (mitmdump)

2. Replay in integration tests against own endpoint

3. Replace Dates and random IDs in requests and responses

4. Fix failures

5. Understand & Refactor & Document

I http://mitmproxy.org/doc/mitmdump.html

I https://github.com/Kagency/http-replay

http://mitmproxy.org/doc/mitmdump.html
https://github.com/Kagency/http-replay


How To Test?

1. Record real replication (mitmdump)

2. Replay in integration tests against own endpoint

3. Replace Dates and random IDs in requests and responses

4. Fix failures

5. Understand & Refactor & Document

I http://mitmproxy.org/doc/mitmdump.html

I https://github.com/Kagency/http-replay

http://mitmproxy.org/doc/mitmdump.html
https://github.com/Kagency/http-replay


How To Test?

1. Record real replication (mitmdump)

2. Replay in integration tests against own endpoint

3. Replace Dates and random IDs in requests and responses

4. Fix failures

5. Understand & Refactor & Document

I http://mitmproxy.org/doc/mitmdump.html

I https://github.com/Kagency/http-replay

http://mitmproxy.org/doc/mitmdump.html
https://github.com/Kagency/http-replay


How To Test?

Disclaimer:
We will still need Unit Tests to test some of the

algorithms dedicatedly.



Implementation

I Using Symfony2 as a HTTP Framework
I All logic implemented in framework agnostic controllers /

services / repositories
I Using a repository to store information with any backend

I Currently only an in-memory backend is actively used / tested

I https://github.com/Kagency/couchdb-endpoint

https://github.com/Kagency/couchdb-endpoint


Implementation

I Using Symfony2 as a HTTP Framework
I All logic implemented in framework agnostic controllers /

services / repositories
I Using a repository to store information with any backend

I Currently only an in-memory backend is actively used / tested

I https://github.com/Kagency/couchdb-endpoint

https://github.com/Kagency/couchdb-endpoint


Implementation

I Using Symfony2 as a HTTP Framework
I All logic implemented in framework agnostic controllers /

services / repositories
I Using a repository to store information with any backend

I Currently only an in-memory backend is actively used / tested

I https://github.com/Kagency/couchdb-endpoint

https://github.com/Kagency/couchdb-endpoint


Demo

Replicate a CouchDB database into MySQL



Conclusion

I Offline-First Eventual-Consistent HTML5 Mobile Apps are the
future! Bingo!

I Try Hood.ie for prototyping Offline-First Apps
I “Coding Your Dream” by Team Hoodie at 15:15 in C117

I Use custom implementations to add some sauce



Conclusion

I Offline-First Eventual-Consistent HTML5 Mobile Apps are the
future! Bingo!

I Try Hood.ie for prototyping Offline-First Apps
I “Coding Your Dream” by Team Hoodie at 15:15 in C117

I Use custom implementations to add some sauce



Conclusion

I Offline-First Eventual-Consistent HTML5 Mobile Apps are the
future! Bingo!

I Try Hood.ie for prototyping Offline-First Apps
I “Coding Your Dream” by Team Hoodie at 15:15 in C117

I Use custom implementations to add some sauce



Conclusion

I Offline-First Eventual-Consistent HTML5 Mobile Apps are the
future! Bingo!

I Try Hood.ie for prototyping Offline-First Apps
I “Coding Your Dream” by Team Hoodie at 15:15 in C117

I Use custom implementations to add some sauce



Conclusion

I Offline-First Eventual-Consistent HTML5 Mobile Apps are the
future! Bingo!

I Try Hood.ie for prototyping Offline-First Apps
I “Coding Your Dream” by Team Hoodie at 15:15 in C117

I Use custom implementations to add some sauce




	Replication Protocol
	Implementation

