
Refactoring to Design Patterns
PHP Unconference 2013

Qafoo GmbH
September 23, 2013



About Qafoo

Helping people to create high quality web applications.
http://qafoo.com

@qafoo

I Trainings
I Consulting
I Tools

http://qafoo.com


Part I

Refactoring



Refactoring

I Refactoring is a disciplined technique for restructuring an
existing body of code, altering its internal structure without
changing its external behavior.

I Its heart is a series of small behavior preserving
transformations.

I Each transformation (called a ’refactoring’) does little, but a
sequence of transformations can produce a significant
restructuring.

I Since each refactoring is small, it’s less likely to go wrong.



Part II

Design Patterns



Patterns are . . .

. . . names for proven ideas how a certain class of problems
can be solved.



Patterns are not . . .

I . . . appliable to every problem.
I . . . directly transferable to code.
I . . . written in stone.
I . . . always the best solution.



Refactoring and Patterns

I Design Patterns are often target of a refactoring
I Refactoring to patterns to

I . . . reduce complexity
I . . . reduce duplication
I . . . increase readability/comprehension
I . . . reach SRP and DIP

I Helpful Refactorings
I Extract Method
I Extract Class
I Move Method



Factory

A factory creates an object for you.

I Actually 4 patterns
I Factory
I Factory Method
I Abstract Factory
I Builder



Adapter

The Adapter converts between different APIs

I Integrate 3rd party code (libraries)
I Seamless integration into existing interfaces
I Avoid hard dependencies on 3rd party API
I Make 3rd party library replacable
I Strongly Related to the Bridge pattern
I Extremely important patterns for decoupling



Strategy/Policy Pattern

Strategy allows to exchange algorithms at run time.

I Object-oriented switch statement
I When calculations are changing frequently
I Or when they change based on state
I Construction of strategies often combined with a factory




	Refactoring
	Design Patterns

