
Fixing Legacy Code
FrOSCon 2013

Benjamin Eberlei @beberlei &
Kore Nordmann @koredn

August 24, 2013

Legacy Code

I Legacy Code is code, which is . . .
I . . . hard / impossible to change / adapt / adopt.
I . . . hard / impossible to put under test.

We will talk about:

I We will talk about:
I Common Legacy Code issues
I How to verify we do not break everything
I Refactoring Legacy Code

Outline

Issues with Legacy Code

Testing changes

Issues with Legacy Code (2)

Issues with Legacy Code

Code
Issues

Inversion
Of Control

Application /
Business Logic

Data
Structures

Shared
State

Code-Size

Complexity

High Efferent
Coupling

Code
Duplication

static Calls

Inline new

Inline Life Cycle
Management

Missing
Abstractions

Business Logic
In Controllers

No Workflow
Abstraction

No Event
Handling

Not Immutable Hash Maps

No Logic
Scoping

Global Class

Session

Issues with Legacy Code

Code
Issues

Inversion
Of Control

Application /
Business Logic

Data
Structures

Shared
State

Issues with Legacy Code: Code Issues

Code
Issues

Inversion
Of Control

Application /
Business Logic

Data
Structures

Shared
State

Code-Size

Complexity

High Efferent
Coupling

Code
Duplication

Code Issues

I Easy to locate (Size & Complexity):

1 $ phpmd src / main / t e x t codesize
2
3 Review / Analyzer / PDepend / Model . php :165
4 The method getAnnota t ions () has a Cyclomat ic Complexi ty o f 12. The conf igured

cyc lomat ic complex i ty th resho ld i s 10.
5 Review / C o n t r o l l e r / Source . php :225
6 The method toAr ray () has an NPath complex i ty o f 251. The conf igured NPath complex i ty

th resho ld i s 200.
7 Review / DIC / Base . php :55
8 The method i n i t i a l i z e () has 142 l i n e s o f code . Current th resho ld i s set to 100. Avoid

r e a l l y long methods .
9 Review / MySQLi . php :34

10 The method construct () has an NPath complex i ty o f 31250. The conf igured NPath
complex i ty th resho ld i s 200.

Code Issues

I Easy to locate (Duplication):

1 $ phpcpd src / main /
2 phpcpd 1 .4 .1 by Sebast ian Bergmann .
3
4 0.00% dup l i ca ted l i n e s out o f 5162 t o t a l l i n e s o f code .
5
6 Time : 0 seconds , Memory : 5.75Mb

Code Issues

I Easy to locate (Efferent Coupling):

1 $ pdepend −−summary−xml=summary . xml src / main /

Class Efferent Coupling
Base 22.00
PDepend 18.00
CodeSniffer 15.00
PhpAnalyzer 12.00
Phplint 12.00
Phpmd 12.00
UML 11.00
Phpcpd 11.00

Code Issues: Refactoring

I Extract method
I Tool support: OK
I Try to extract pure method (no side effects on object)

I Extract class (Seperation Of Concerns)
I Tool support: Bad
I Usually introduces abstractions (Dependency Inversion)

Outline

Issues with Legacy Code

Testing changes

Issues with Legacy Code (2)

Testing Legacy Software

Project…

"GET /blog/016_struct_classes_in_php.rss HTTP/1.1" 200
"GET /blog.rss HTTP/1.1" 304
"GET /blog.rss HTTP/1.1" 304
"GET /images/clients/sixclicks.png HTTP/1.1" 200
"GET /blog.rss HTTP/1.1" 304
"GET /services/training/topics/build_… HTTP/1.1" 302
"GET /services/training/topics/build_….html HTTP/1.1" 200
"HEAD / HTTP/1.1" 200
"GET /blog.rss HTTP/1.1" 304
"GET /blog.rss HTTP/1.1" 304

Behat

I BDD test framework for PHP
I Inspired by Ruby’s Cucumber
I Work with Gherkin language framework
I http://behat.org

http://behat.org

Mink

I Web acceptance test framework
I Abstracts browser emulations / controllers

I Fast: Goutte
I JavaScript: Sahi
I Others: Zombie.js, Selenium, Selenium 2

I http://mink.behat.org

http://mink.behat.org

Behat Mink Example

1 Feature : Browse Wikipedia
2

3 Scenario : Search f r o n t page
4 Given I am on ” / ”
5 When I f i l l i n ” searchInput ” w i th ” Kore ”
6 And I press ” searchButton ”
7 Then I should see ” Kore may r e f e r to : ”
8

9 Scenario : Fol low r e d i r e c t l i n k
10 Given I am on ” / ”
11 When I f i l l i n ” searchInput ” w i th ” Kore ”
12 And I press ” searchButton ”
13 And I f o l l o w ” Kore (energy d r i nk) ”
14 Then the response s ta tus code should be 200

Mink Behat-extension

I Mink integration for Behat
I Pre-build sentences to browse web applications
I Extensible with custom sentences

I Use to access internals of your (legacy) application
I Use to create data base fixtures

I http://extensions.behat.org/mink

I Use code coverage to check for uncovered features: http://
qafoo.com/blog/040_code_coverage_with_behat.html

http://extensions.behat.org/mink
http://qafoo.com/blog/040_code_coverage_with_behat.html
http://qafoo.com/blog/040_code_coverage_with_behat.html

Outline

Issues with Legacy Code

Testing changes

Issues with Legacy Code (2)

Issues with Legacy Code: Inversion Of Control

Code
Issues

Inversion
Of Control

Application /
Business Logic

Data
Structures

Shared
State

static Calls

Inline new

Inline Life Cycle
Management

Missing
Abstractions

Inversion of Control

I Inline new
I Only for “newables” – use Dependency Injection for everything

else.
I static calls

I Never use static – use Dependency Injection
I Object Life Cycle Management

I Let the DIC / user construct objects
I Constructors (object dependencies) are implementation

specific
I Never pass class names, pass objects

I Missing abstractions
I “Details should depend upon abstractions.” – Uncle Bob

Inversion of Control: Refactoring

I Object graph construction is application configuration
I It’s a different concern!
I Extract Class
I Extract Package

Issues with Legacy Code: Data Structures

Code
Issues

Inversion
Of Control

Application /
Business Logic

Data
Structures

Shared
State

Not Immutable Hash Maps

No Logic
Scoping

Data Structures

I Hash Maps (array)
I Really bad documentation (what properties?, what values?)
I No errors when setting wrong properties / values

I Not immutable
I Value changes have side effects in other application parts
I Horrible to track down

I (Different) logic coupled with models
I Big models
I Seperation of concerns (roles / contextes) on model logic

Data Structure: Refactoring

I Rename method / class / package
I Introduce value objects
I Branch by abstraction

1. Introduce facade / proxy for old code
2. Call old code from facade / proxy implementation
3. Write new shiny facade / proxy impementation
4. Use new implementation
5. Delete old code

Issues with Legacy Code: Mixing Logic

Code
Issues

Inversion
Of Control

Application /
Business Logic

Data
Structures

Shared
State

Business Logic
In Controllers

No Workflow
Abstraction

No Event
Handling

Mixing Logic

Mixed business logic (with application logic) in
large controllers is the most common and pressing

issue with legacy code.

Mixing Logic: Refactoring

I Extract method / class / package
I Extract business logic: Service Layer Pattern
I Introduce (domain) events
I Introduce a workflow abstraction?

Issues with Legacy Code: Shared State

Code
Issues

Inversion
Of Control

Application /
Business Logic

Data
Structures

Shared
State

Global Class

Session

Shared State

I We know that global state is bad.
I Sessions are (often) cross-request global state in hash maps
I Method execution pathes depending on current object state

are horrible to track down

Shared State: Refactoring

I Extract pure functions (no side effects: object, global,
session)

I Remove side effects from classes
I Make necessary side effects as explicit as possible (state,

output, . . .)

Summary (1)

Code
Issues

Inversion
Of Control

Application /
Business Logic

Data
Structures

Shared
State

Code-Size

Complexity High Efferent
Coupling

Code
Duplication

static Calls Inline new

Inline Life Cycle
Management

Business Logic
In Controllers

No Workflow
Abstraction

Not Immutable

Hash Maps

Global

Class

Session

Summary (2)

I One step at a time
I Test your primary use cases
I Be bold (enough)

	Issues with Legacy Code
	Testing changes
	Issues with Legacy Code (2)

