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Legacy Code

I Legacy Code is code, which is . . .
I . . . hard / impossible to change / adapt / adopt.
I . . . hard / impossible to put under test.



We will talk about:

I We will talk about:
I Common Legacy Code issues
I How to verify we do not break everything
I Refactoring Legacy Code
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Issues with Legacy Code: Code Issues
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Code Issues

I Easy to locate (Size & Complexity):

1 $ phpmd src / main / t e x t codesize
2
3 Review / Analyzer / PDepend / Model . php :165
4 The method getAnnota t ions ( ) has a Cyclomat ic Complexi ty o f 12. The conf igured

cyc lomat ic complex i ty th resho ld i s 10.
5 Review / C o n t r o l l e r / Source . php :225
6 The method toAr ray ( ) has an NPath complex i ty o f 251. The conf igured NPath complex i ty

th resho ld i s 200.
7 Review / DIC / Base . php :55
8 The method i n i t i a l i z e ( ) has 142 l i n e s o f code . Current th resho ld i s set to 100. Avoid

r e a l l y long methods .
9 Review / MySQLi . php :34

10 The method construct ( ) has an NPath complex i ty o f 31250. The conf igured NPath
complex i ty th resho ld i s 200.



Code Issues

I Easy to locate (Duplication):

1 $ phpcpd src / main /
2 phpcpd 1 .4 .1 by Sebast ian Bergmann .
3
4 0.00% dup l i ca ted l i n e s out o f 5162 t o t a l l i n e s o f code .
5
6 Time : 0 seconds , Memory : 5.75Mb



Code Issues

I Easy to locate (Efferent Coupling):

1 $ pdepend −−summary−xml=summary . xml src / main /

Class Efferent Coupling
Base 22.00
PDepend 18.00
CodeSniffer 15.00
PhpAnalyzer 12.00
Phplint 12.00
Phpmd 12.00
UML 11.00
Phpcpd 11.00



Code Issues: Refactoring

I Extract method
I Tool support: OK
I Try to extract pure method (no side effects on object)

I Extract class (Seperation Of Concerns)
I Tool support: Bad
I Usually introduces abstractions (Dependency Inversion)
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Testing Legacy Software

Project…

"GET /blog/016_struct_classes_in_php.rss HTTP/1.1" 200
"GET /blog.rss HTTP/1.1" 304
"GET /blog.rss HTTP/1.1" 304
"GET /images/clients/sixclicks.png HTTP/1.1" 200
"GET /blog.rss HTTP/1.1" 304
"GET /services/training/topics/build_… HTTP/1.1" 302
"GET /services/training/topics/build_….html HTTP/1.1" 200
"HEAD / HTTP/1.1" 200
"GET /blog.rss HTTP/1.1" 304
"GET /blog.rss HTTP/1.1" 304



Behat

I BDD test framework for PHP
I Inspired by Ruby’s Cucumber
I Work with Gherkin language framework
I http://behat.org

http://behat.org


Mink

I Web acceptance test framework
I Abstracts browser emulations / controllers

I Fast: Goutte
I JavaScript: Sahi
I Others: Zombie.js, Selenium, Selenium 2

I http://mink.behat.org

http://mink.behat.org


Behat Mink Example

1 Feature : Browse Wikipedia
2

3 Scenario : Search f r o n t page
4 Given I am on ” / ”
5 When I f i l l i n ” searchInput ” w i th ” Kore ”
6 And I press ” searchButton ”
7 Then I should see ” Kore may r e f e r to : ”
8

9 Scenario : Fol low r e d i r e c t l i n k
10 Given I am on ” / ”
11 When I f i l l i n ” searchInput ” w i th ” Kore ”
12 And I press ” searchButton ”
13 And I f o l l o w ” Kore ( energy d r i nk ) ”
14 Then the response s ta tus code should be 200



Mink Behat-extension

I Mink integration for Behat
I Pre-build sentences to browse web applications
I Extensible with custom sentences

I Use to access internals of your (legacy) application
I Use to create data base fixtures

I http://extensions.behat.org/mink

I Use code coverage to check for uncovered features: http://
qafoo.com/blog/040_code_coverage_with_behat.html

http://extensions.behat.org/mink
http://qafoo.com/blog/040_code_coverage_with_behat.html
http://qafoo.com/blog/040_code_coverage_with_behat.html
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Issues with Legacy Code: Inversion Of Control
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Inversion of Control

I Inline new
I Only for “newables” – use Dependency Injection for everything

else.
I static calls

I Never use static – use Dependency Injection
I Object Life Cycle Management

I Let the DIC / user construct objects
I Constructors (object dependencies) are implementation

specific
I Never pass class names, pass objects

I Missing abstractions
I “Details should depend upon abstractions.” – Uncle Bob



Inversion of Control: Refactoring

I Object graph construction is application configuration
I It’s a different concern!
I Extract Class
I Extract Package



Issues with Legacy Code: Data Structures

Code
Issues

Inversion
Of Control

Application /
Business Logic

Data
Structures

Shared
State

Not Immutable Hash Maps

No Logic
Scoping



Data Structures

I Hash Maps (array)
I Really bad documentation (what properties?, what values?)
I No errors when setting wrong properties / values

I Not immutable
I Value changes have side effects in other application parts
I Horrible to track down

I (Different) logic coupled with models
I Big models
I Seperation of concerns (roles / contextes) on model logic



Data Structure: Refactoring

I Rename method / class / package
I Introduce value objects
I Branch by abstraction

1. Introduce facade / proxy for old code
2. Call old code from facade / proxy implementation
3. Write new shiny facade / proxy impementation
4. Use new implementation
5. Delete old code



Issues with Legacy Code: Mixing Logic
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Mixing Logic

Mixed business logic (with application logic) in
large controllers is the most common and pressing

issue with legacy code.



Mixing Logic: Refactoring

I Extract method / class / package
I Extract business logic: Service Layer Pattern
I Introduce (domain) events
I Introduce a workflow abstraction?



Issues with Legacy Code: Shared State
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Shared State

I We know that global state is bad.
I Sessions are (often) cross-request global state in hash maps
I Method execution pathes depending on current object state

are horrible to track down



Shared State: Refactoring

I Extract pure functions (no side effects: object, global,
session)

I Remove side effects from classes
I Make necessary side effects as explicit as possible (state,

output, . . . )
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Summary (2)

I One step at a time
I Test your primary use cases
I Be bold (enough)
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