Testable Code

Symfony Live Berlin

Kore Nordmann (@koredn)
Tobias Schlitt (@tobySen)

November 22, 2012

Testable Code 1/109

About us

» Kore Nordmann » Tobias (Toby) Schlitt
» kore@gafoo.com » toby@qafoo.com
> @koredn » @tobySen

» Degree in computer sience
» Proessional PHP since 2000

v

Open source enthusiast

Testable Code 2/109

kore@qafoo.com
toby@qafoo.com

Co-founders of

= ofoo

passion for soffware quality

Helping people to create high quality web applications.
http://qafoo.com

» Expert consulting
» Individual training

From 2013 on incorporating Doctrine 2 & Symfony2 expertise!

Testable Code 3/109

http://qafoo.com

Task: Who are you?

» Get in touch with your seat neighbor
» Who is he?
» What is his background?
» What does he expect to learn here?

» 2 minutes time

» Introduce your neighbor to the audience

Testable Code 4/109

Testable Code

Part |

Testing

5/109

Why Test?

Time to A
Bugfix /
Feature
_.Business
Value

Project Lifetime

Testable Code 6/109

Outline

Types
Unit tests

Example

Testable Code

7/109

Ways of testing

Testable Code

Automatic vs. manual
Developer vs. tester

Internal vs. external

Back end vs. front end

Code vs. appearance
Functional vs. non-functional
Dynamic vs. static

8/109

Test methods

v

Unit tests

v

Integration tests

v

Regression tests

v

Acceptance tests

Testable Code 9/109

Test Stability

Stability,

—

o Tests

Unit
hegrgssion
Tests
Integration
Tests

Functional

Tests)

Acceptance

Tests

Testable Code

Coverage

10/109

Outline

Types
Unit tests

Example

Testable Code

11/109

Unit tests

» Purpose
» Validate functionality
» Test a single unit of code
> Avoid regressions
» Applications
> Verify interfaces (public API)
» Test bugs dedicatedly
» Benefits

» Force code modularization
» Ensures backwards compability
» Migrate safely

Testable Code 12/109

Test Driven Development (TDD)

» Test Driven Development

» 1) Write (& document) interfaces
» 2) Write tests
» 3) Write implementation

» Benefits

> Alot less defects in code

» Faster development after a couple of projects
» More developer satisfaction

» Less code

Testable Code

13/109

Consequences

» Consequences of unit testing

» Testing of units requires replacing dependencies
» Stable well-designed API
» Ensures backwards compability

Testable Code 14/109

Outline

Types
Unit tests

Example

Testable Code

15/109

Example

Developing a weather service

Testable Code

16/109

Requirements

v

Fetch weather for a city
Relevant data:
» Condition
» Temperature
» Wind
Be service-agnostic
» Weather service come and go
» Data licenses may change

v

v

v

Log service failures

v

Make it possible to add service fallbacks later

Testable Code 17 /109

Class diagram

Loader

+_construct(Service, Logger)
+addFallbackService(Service)
+getWeatherForLocation(Location)

Testable Code

18/109

Task: What tests do you want?

v

Group with 3-4 people
Discuss:

» What types of tests do you have in your projects?
» What types of tests do you desire for the future?

v

v

5 minutes time

v

Collect the most common answers

Testable Code

19/109

Part [l

Testable Code

Testable Code 20/109

Outline

Testing issues

Conclusion

Testable Code 21/109

The Example

<?php
class WeatherLoader
{
public function getWeatherForLocation(Location $location)
$xml = $this—>fetchData($location—>city);
Logger::logDebug('Fetched XML', $xml);
return $this—>parseData($xml);
}
protected function fetchData($city)
{
$url = sprintf("http://...? city=%s ', $city);
return $this—>fetchFromUrl($url);
}
protected function parseData($xml)
{
$weather = new Weather () ;
$weather—>conditions = $this—>parseConditions($xml);
$weather—>windSpeed = $this—>milesToKilometers (
$this —>parseWindSpeed($xml)
)i
return $weather;
}
IE Y
}
Testable Code 22/109

Issue #1

<?php

class WeatherLoader

{

public function getWeatherForLocation(Location $location)

$xml = $this—>fetchData($location—>city);
Logger::logDebug('Fetched XML™, $xml);
return $this —>parseData($xml);

}

protected function fetchData($city)

{
$url = sprintf("http://...? city=%s ", $city);
return $this —>fetchFromUrl($url);

}

protected function parseData($xml)

{
$weather = new Weather () ;
$weather—>conditions = $this—>parseConditions($xml);
$weather—>windSpeed = $this—>milesToKilometers (

$this —>parseWindSpeed ($xml)

)i
return $weather;

}

IERY

}

Testable Code 24/109

Protected to Public

<?php

class Weathe
{

public func Location $location)

$xml = $th lon—>city);
Logger::log Y, $xml o)
return $this— H
}
public function fetc
{
$url = sprintf ? city=%s’', $city);
return $this— ;
}
public functio
{
Conditions ($xml);
}
JE Y|
}
Testable Code 25/109

Mocking the Subject

{

public function

{
return parent::

}

public function par

{

return paren

/!

Testable Code

26/109

Protected to Public

» Exposed functionality will be used
» Creates public API that is hard to change
» Internal dependencies might break

Testable Code 27/109

The Real Issue

E_TOO_MANY_RESPONSIBILITIES

Testable Code

28/109

The Fix

<?php
class WeatherLoader
(public function __construct(WeatherService $service, WeatherParser $parser)
(11
public function getWeatherForLocation(Location $location)
: $data = $this—>service —>getWeather($location);
Logger::logDebug('Fetched.data’, $data);
) return $this —>parser—>parseData($data);
}
Testable Code 29/109

The Fix

» Never test private/protected explicitely
» Test them implicitely ...
» ...or change the code

Testable Code

30/109

Issue #2

<?php
class WeatherLoader
: public function __construct(WeatherService $service, WeatherParser $parser)
(/1
public function getWeatherForLocation(Location $location)
! $data = $this—>service —>getWeather($location);
Logger::logDebug('Fetched.data’, $data);
) return $this—>parser—>parseData($data);
}
Testable Code 32/109

Test Code in Production

<?php

class Logger
{

public static fu $message, $data)

...

}
public static func

Testable Code

33/109
2 (Jofoo onfactPqaroo.co

Test Code in Production - continued

<?php

class Logger
{
public static fu

...

public static func nce(Logger $logger)

Testable Code

34/109
2 (Jofoo

The Real Issue

Testable Code

E_STATIC_DEPENDENCY

35/109

The Fix

<?php
class WeatherLoader
{
public function __construct(
WeatherService $service,
WeatherParser $parser
Logger $logger)
11
}
public function getWeatherForLocation(Location $location)
{
$data = $this—>service —>getWeather($location);
$this —>logger—>logDebug('Fetched.data’', $data);
return $this —>parser—>parseData($data);
}
}
Testable Code 36/109

The Fix

» Never use static access
» Always inject dependencies
» Maybe use a dependency injection container (DIC)

Testable Code 37/109

Issue #3

<?php
class WeatherService
! public function __construct(AppRegistry $registry)
(/1
public function getWeather(Location $location)
$httpClient = $this —>appRegistry—>get('http_client’);
$url = sprintf("http://...? city=%s", $city);
return $httpClient—>get($url);
y }
Testable Code 39/109

Mocking to Mock

ework_TestCase

k('HttpClient’);
s—>once())

$appRegistryMoc

$appRegistryMo
—>method

/%

getMock('AppRegistry’);
$this —>once ())

$service

ppRegistryMock) ;
$this —,

Testable Code 40/109

Using Productive Code in Tests

class Weathe ework_TestCase

Testable Code

$httpClient i "HttpClient’);
$httpClientM is—>once())

—>method (
% .. %/

$appRegistry =
$appRegistry — i ", $httpClientMock);

$service =
$this —>as

41/109

The Real Issue

E_REACHING_THROUGH_OBJECTS

Testable Code

42/109

The Fix

<?php
class WeatherService
{
public function __construct(HttpClient $httpClient)
{
2
}
public function getWeather(Location $location)
{
$url = sprintf("http://...? city=%s’, $city);
return $this—>httpClient—>get($url);
}
}
Testable Code 43/109

The Fix

» Do not pull dependencies ...
> ...push them
» Do not reach through objects

Testable Code

44/109

Issue #4

<?php
class Logger

public function __construct($fileName)
{
11 error checks ...
$this —>fileHandle fopen($fileName, °

}
public function logDebug($message, $data)
{
fwrite (
$this —>fileHandle ,
sprintf(
"%s . (%s)\n",
$message,
$data

Testable Code

a’);

46/109

Accessing File System in Tests

class LoggerTe i _TestCase

$tmpLogFile

$logger = new L LogFile);

$logger—>logDebu message. ', 'with.data’);

$this —>assert

Testable Code

47/109

Accessing File System in Tests

» No file access in unit tests (slow!)
» Maintaining temporary files sucks

» Creating
» Cleanup
» System differences

Testable Code 48/109

The Virtual File System

’/message.log’;

$logger = new L

$logger—>logDebu: ., ’with.data’);

()—>hasChild('message.log’)

Testable Code

49/109

The Virtual File System

» Works, but ...

Testable Code

50/109

The Real Issue

Testable Code

E_HARD_SYSTEM_DEPENDENCY

51/109

The Fix

<?php

class Logger

{
public function __construct(FileHandler $fileHandler)

$this—>fileHandler = $fileHandler;
}
public function logDebug($message, $data)
{

$this—>fileHandler >write (

sprintf(
"%s o(%s)\N",
$message,
$data

)

)i
}
}
Testable Code 52/109

The Fix

» Abstract system dependencies ...

> ...as low as possible

Testable Code

53/109

Outline

Testing issues

Conclusion

Testable Code 54/109

What have we seen?

v

Single Responsibility Principle
Open Close Principle

v

v

Law of Demeter

v

Dependency Inversion Principle

Testable Code 55/109

Conclusion

Testable Code

Testable Code

I

Good OOD

56/109

SOLID

Testable Code

O—-—rmr 0w

Single Responsibility Principle
Open / Close Principle

Liskov Substitution Principle
Interface Segregation Principle
Dependency Inversion Principle

57/109

Task: Define a Component to be Designed

» Full audience
» Define a component to design

» Not too big for today
» Not too small to be trivial

» |ldeas?

Testable Code 58/109

Task: Design the Component

v

Group with 3-4 people
For the component we just defined

Create an Object Oriented Design (OOD)
» Name classes
» Method stubs
> Draw fancy pictures
Pay attention to
» SOLID
» Law of Demeter
» Testability

\{

v

v

Testable Code 59/109

Testable Code

Part Il

Metrics

60/109

Outline

What are metrics?

Classic software metrics

Object oriented software metrics

Conclusion

Testable Code

61/109

Software metrics

» A software metrics is a measure for a quality aspect of object
oriented software
» “A software metric is a measure of some property of a piece of
software or its specifications” (Wikipedia)
> “You cannot control what you cannot measure.” (Tom
DeMarco)
> Has been relativized by now.

Testable Code 62/109

Outline

What are metrics?

Classic software metrics

Object oriented software metrics

Conclusion

Testable Code

63/109

Scale metrics

» Sums over software artifacts
> Lines Of *
LOC Lines Of Code
ELOC Executable Lines Of Code
CLOC Comment Lines Of Code
NCLOC Non-Comment Lines Of Code

> Number Of *

NOC Number Of Classes
NOM Number Of Methods
NOP Number Of Packages

Testable Code 64 /109

Lines Of *, Number Of *

<?php
namespace foo\bar;

abstract class FooBar {
abstract function bar();
}

class Foo extends FooBar {

/* Does this ... x/
public function bar() {}
/+ Does that ... =/

public function baz() {}

}
class Bar extends Foo {

public function foo(Foo $f) {}
}

Testable Code

» Lines Of *
LOC 16
ELOC 3
CLOC 2
NCLOC 14

» Number Of *

NOC 3
NOM 4
NOP 1

65/109

Complexity metrics

» Control structures are the key point to complexity

> if, elseif, for, while, foreach, catch, case, xor, and, or, &&, ||, ?:
» Cyclomatic Complexity (CCN)

» Number of branches
» NPath Complexity

» Number of execution paths
» Minds the structure of blocks

Testable Code 66 /109

Cyclomatic Complexity

<?php
class Foo {
public function foo () {
it ($x) { }
it ($y) { }
it ($z) { }
return $x;

CCN: 01234

Testable Code 67 /109

NPath Complexity

<?php
class Foo {
public function foo () {
it ($x) {)
it ($y) {)
it ($z) { }
return $x;

Testable Code

68/109

Cyclomatic Complexity

<?php
class Foo {
public function foo () {
if ($x) {
if ($y) {
if ($2) { }

}

return $x;

CCN: 01234

Testable Code 69 /109

NPath Complexity

<?php
class Foo {
public function foo () {
it ($x) {
if (8y) {
if ($2) { }
}

return $x;

NPath: 01234

Testable Code 70/109

Sensible limits

» Numbers do not tell anything by themselves
» To judge you need limiting values
» Cyclomatic Complexity
> 1-4: low, 5-7: medium, 8-10: high, 11+: hell
» NPath Complexity
» 200: critical mass

» Limiting values are at your discretion

Testable Code

71/109

Combine metrics

Combined metrics allow deep insight in complex products
» LOC: 300; CCN: 42; NOC: 5; NOM: 15
» CCN/LOC =0,14
> Every sixth line is a control structure
» LOC /NOC =60
> Procedural code or big classes
» LOC /NOM = 20
> Big methods or procedural code
» CCN/NOM =28
> Highly complex methods

Testable Code 72/109

Combine metrics: CRAP

Is your code CRAP?
cen(m)? + cen(m), if cov(m) =0
CRAP(m) = < ccn(m), if cov(m) > .95

cen(m)? « (1 — cov(m))® + cen(m), else

» Change Risk Anti Patterns

Testable Code 73/109

Task: Analyze your source with PDepend

v

Group with 3-4 people
Install PDepend
> http://pdepend.org/
Analyze your code
» What are the top / bottom methods?
» Did you expect the complexity?
» How could you attempt to solve it?
How to?

> $ pdepend --summary=summary.xml srcDir/
» Helpful script: http://stuff.qafoo.com/pListTop. txt

v

v

v

Testable Code 74/109

http://pdepend.org/
http://stuff.qafoo.com/pListTop.txt

Outline

What are metrics?
Classic software metrics
Object oriented software metrics

Conclusion

Testable Code 75/109

Chidamber & Kemerer

» A Metrics Suite for Object Oriented Design
» Weighted Methods per Class (WMC)
> Sum of method complexities
> Limiting value: 20 - 50
» Number Of Children (NOC)
> Number of class extension
> Indicator for wrong use of abstraction / inheritance
» Depth of Inheritance Tree (DIT)
> Inheritance can increase software complexity
> Limiting value: <5
» Commonly limited at component boundary

Testable Code 76 /109

Object oriented software metrics

» AbstractClass
AbstractClass WMC 0
+bar() DIT 0
» BaseClass
BaseClass Dependent WMC 2
+bar() oo +foo() DIT 1
+baz() | +bar() » SubClass
WMC 1
DIT 2
SubClass
+foo() » Dependent
WMC 2
DIT 0
Testable Code 77/109

Coupling

» Excessive coupling is one of the key problems in modern
Object-Oriented Softaresystems
» So what kinds of dependencies do we know?
» Artifacts that utilize other artifacts (outgoing dependency)
» Artifacts that are used by other parts of the system (incoming
dependency)
» Poorly designed artifacts do both excessively

» Dependencies between artifacts are established by:
» Object instantiations
» Static method calls

» Method parameters
» Thrown and catched exceptions

Testable Code 78/109

Coupling

» Coupling Between Objects (CBO)

Testable Code

>

>

>

>

Describes the number of outgoing dependencies
Introduced in Chidamber’s & Kemerer's Metrics Suite for OOD
Limiting value: < 14
Classes and interfaces within the same inheritance hierarchy
are no dependencies
Software artifacts with high coupling tend to be error-prone
This metric is also known as Efferent Coupling (Cg)

> Because UncleBob has used that name in his Design Quality

Metrics paper

79/109

Coupling

» Afferent Coupling (Ca)
» Describes the number of incoming dependencies
» High afferent coupling indicates code reuse
» But also implies requires stable and well defined APls
» Classes and interfaces within the same inheritance hierarchy
are no dependencies

Testable Code

80/109

Instability

» What other coupling based quality aspects can we measure?
> Idea:
» A component becomes more error-prone the higher the
coupling to other objects is
> We can say, the component reacts more and more instable to
external changes
» A component with a high afferent coupling has a greater
impact
> We can say, the component is responsible for the entire
systems stability
» A new metric, which is an indicator for the component’s
responsibility in the entire system
> Instability:

| = Efferent/(Efferent + Afferent)

» The range of this metric is [0,1]

Testable Code 81/109

Abstractness

» Define a formula for abstractness:
» Abstractness:

A = Abstracts/(Abstracts + Concretes)

» The range of this metric is [0,1]
» What stability could we expect for an abstract class or an
interface?
» An instability of 0, because something totally abstract
describes normally an API (no outgoing dependencies)
» On the other hand we have a 100% concrete component,
what stability can we expect here?
» Here we can expect an instability of nearly 1 (no incoming
dependencies)
» This means that there is an expected relation between the
instability of a component and its abstraction

Testable Code

82/109

Abstractness & Instability

1.0
0.9
0.8
0.7
0.6
05 @ =
0.4
0.3
0.2
0.1
0.0

Instability
Instability

Testable Coge 00 01 02 03 04 05 06 07 08 09 1.0,

© © © 2 © 9 2 A0 o =

CodeRank

» Based on Googles PageRank™

» Maps software to a graph
» A node (r) for each software artifact
> Package, Class, Method
» An edge (p) for each relation
> Inheritance, Call, Parameter, Exceptions

» CodeRank:

CR(m) = Y r(1-d)+d) r(CR(x)/p/))

r

Testable Code 84/109

CodeRank

AbstractClass
1,01,0001,3610,7470,4860,486

BaseClass Dependent |taration:
1,01,4250,7030,3950895083500, 1500, 150,150
“ 012345

SubCIassh,'
1,00,5750,2140,2140,2140,214

Testable Code 85/109

CodeRank

> Incorporates indirect dependencies

» Locates elements with high effect on the whole system
» Reverse CodeRank:
» Shows dependent components

Testable Code 86/109

Outline

What are metrics?

Classic software metrics

Object oriented software metrics

Conclusion

Testable Code

87/109

Metrics are . ..

> ... no magic, but simple measured values

> ... useless without limiting values

> ... scalable — grow with project growth

> ... reproducible and automatable

> ... objective — since calculated by software

> ... highly interpretable — interpretation depends on viewer

Testable Code 88/109

Task: Code Review

» Give us some code
» Don’t be shy

Testable Code

89/109

Part IV

Refactoring

Testable Code 90/109

Refactoring

» Code refactoring is the “disciplined technique for restructuring
an existing body of code, altering its internal structure without
changing its external behavior”

» Change code, but do not break it

» (Functional) tests are really, really useful during refactoring.
» Goals

» Increase maintainability (reduce complexity)

» Increase testability

> Increase re-usability

Testable Code 91/109

Common techniques

» Rename method
» Readability / maintainability
Extract method
» Move reused code into its own methods
» Reduces complexity
Extract class
» Move code segments into its own class / implementation
» See: Separation of Concerns, Interface Segregation Principle
Extract module / component
» Make code reusable across projects
» See: Separation of Concerns, Interface Segregation Principle,
Open Closed Principle

v

v

v

Testable Code 92/109

static

» static is the single most pressing issue when it comes to
testability

> static access
» Registries
» Singletons

Testable Code 93/109

The Problem

» static access is the problem, not static methods.

class UserModel {
;/)/ubllc function login ()
(/...
Logger::log("User.{$this—>name}._has.just.logged.in.”);
) 1 ...

"o
» Most common use cases:

» Logging

» Configuration access
» Cache access

» Data storage access

Testable Code 94/109

Locating the evil

» Shell

ack—grep —php '[A-Za-z0-9_]+::" | \
sed —e 's/.x["A-Za-z0-9_]\([A-Za—z0-9_]\+\) ::.=/\1/" | \
sort | unig -c¢ | sort —-nr

Testable Code 95/109

Push vs. Pull

» Pushing dependencies
» The dependencies are provided during object construction
» Legacy code might implicitely create objects, though.

» Pulling dependencies

» Requesting global variable / Singleton
» Requesting from a Single Type Container

> Replacing dependencies is possible

» Requesting from a Multiple Type Container (Service Locator)
> Implicit dependency on the full system

» Containers may be injected or accessed statically

Testable Code 96 /109

Refactoring Approaches

More
Refactoring
Effort

Testable Code

Using Dependency Injection &
Using a Dependency Injection Container for everything

Static Proxies for legacy code
DI & DIC for new code

Static Proxies (Multitions)

Global Service Locator / Registry

Harder
To
Test

97 /109

Dependency Injection

» All dependencies are provided through constructor or setter
injection
» No object construction except in the Dependency Injection
Container (DIC)
» Except for value objects and exceptions
» Bootstrap requests objects from DIC
» The DIC is not passed to any class
> Maybe except controllers

Testable Code 98/109

Dependency Injection — Summary

» Benefits
» Simple and effective Unit Testing
» Exposes S.O.L.I.D. violations

» Drawbacks

» Designing proxies for legacy code is a lot of work
» Refactoring all code to use dynamic access is a lot of work
» Solving S.O.L.I.D. violations is additional work

Testable Code 99/109

Static Proxies

» Wrap code into static proxies with replacement option
» Class names of static calls must be adapted
» Optionally exchange used code in tests

Testable Code 100/ 109

Static Proxies — Base Class

trait Proxy {
use Singleton;

protected static $target;

final public static function getTarget()

{
return isset(static::$target)
? static :: $target
. static:: $target = static::getDefaultinstance ();
}
protected static function getDefaultinstance ()
{
throw new \RuntimeException("No_default.target_specified.”);
}

final public static function setTarget($target)

static :: $target = $target;

}

public static function __callStatic($method, array $parameters)

i return call_user_func_array(array(self::getTarget(), $method), $parameters);
Testabl)e Code 101/109

Static Proxies — Extensions

class DebugProxy {
use Proxy;

protected static function getDefaultinstance ()

return Debug::getinstance () ;

}

// Optionally define methods explicitely and proxy calls to make
// mocking more obvious.

}
// Debug::log("Hello World!”);

// changes to:
DebugProxy :: log("Hello.World!");

Testable Code 102/109

Static Proxies — Summary

» Benefits

» Somehow testable, with dedicated replacements
» Dependencies are still possible to extract

» Drawbacks
» Complex test setups for proxied classes

Testable Code 103/109

Global Service Locator

» One service locator to receive everything from
» Usually accessed statically

Testable Code 104 /109

Global Service Locator — Summary

» Benefits
» Somehow testable, but requires mocking the full system
» Drawbacks

» Complex test setups
» Implicit full system dependency

Testable Code 105/109

Refactoring Approaches

More
Refactoring
Effort

Testable Code

Using Dependency Injection &
Using a Dependency Injection Container for everything

Static Proxies for legacy code
DI & DIC for new code

Static Proxies (Multitions)

Global Service Locator / Registry

Harder
To
Test

106 /109

Summary

» All approaches suck in some way.
» Choose wisely depending on ambitions and requirements

Testable Code 107 /109

Refactoring

» Give us some code

> ... let’s look at it together.

Testable Code

108/109

Thanks for Listening

Rate this talk: https://joind.in/7575

Stay in touch

» Kore Nordmann » Tobias (Toby) Schilitt
» kore@gafoo.com > toby@gafoo.com
> @koredn > @tobySen

Rent a PHP quality expert:
http://qafoo.com

Testable Code

109/109

https://joind.in/7575
kore@qafoo.com
toby@qafoo.com
http://qafoo.com

	Testing
	Types
	Unit tests
	Example

	Testable Code
	Testing issues
	Issue #1
	Issue #2
	Issue #3
	Issue #4

	Conclusion

	Metrics
	What are metrics?
	Classic software metrics
	Object oriented software metrics
	Conclusion

	Refactoring

