
HTTP is your architecture
International PHP Conference Spring Edition

Kore Nordmann (@koredn)
Tobias Schlitt (@tobySen)

May 31, 2011

HTTP is your architecture 1 / 34

About us

I Degree in computer sience

I More than 10 years of
professional PHP

I Open source enthusiasts

I Contributing to various
FLOSS projects

Qafoo
passion for software quality

HTTP is your architecture 2 / 34

About us

I Degree in computer sience

I More than 10 years of
professional PHP

I Open source enthusiasts

I Contributing to various
FLOSS projects

Qafoo
passion for software quality

HTTP is your architecture 2 / 34

About us

I Degree in computer sience

I More than 10 years of
professional PHP

I Open source enthusiasts

I Contributing to various
FLOSS projects

Qafoo
passion for software quality

HTTP is your architecture 2 / 34

About us

I Degree in computer sience

I More than 10 years of
professional PHP

I Open source enthusiasts

I Contributing to various
FLOSS projects

Co-founders of

Qafoo
passion for software quality

HTTP is your architecture 2 / 34

About us

I Degree in computer sience

I More than 10 years of
professional PHP

I Open source enthusiasts

I Contributing to various
FLOSS projects

Co-founders of

Qafoo
passion for software quality

We help people to create
high quality PHP

applications.

HTTP is your architecture 2 / 34

About us

I Degree in computer sience

I More than 10 years of
professional PHP

I Open source enthusiasts

I Contributing to various
FLOSS projects

Co-founders of

Qafoo
passion for software quality

We help people to create
high quality PHP

applications.

http://qafoo.com

HTTP is your architecture 2 / 34

http://qafoo.com

Outline

Introduction

HTTP

Taking it further

Conclusion

HTTP is your architecture 3 / 34

Aspects of a web application

I Scalability

I Reliability

I Simplicity

I Usability

I Security

I Standard Compliance

HTTP is your architecture 4 / 34

Architecture

LCoDC$SS

I Who heard of this term before?
I This is HTTP. [Fie00]

HTTP is your architecture 5 / 34

Architecture

LCoDC$SS

I Who heard of this term before?
I This is HTTP. [Fie00]

HTTP is your architecture 5 / 34

Architecture

LCoDC$SS

I Who heard of this term before?
I This is HTTP. [Fie00]

HTTP is your architecture 5 / 34

Architecture

LCoDC$SS

HTTP is your architecture 6 / 34

Architecture

Layered CoDC$SS

HTTP is your architecture 6 / 34

Architecture

Layered Code on Demand C$SS

HTTP is your architecture 6 / 34

Architecture

Layered Code on Demand Client $S Server

HTTP is your architecture 6 / 34

Architecture

Layered Code on Demand Client Cached S

Server

HTTP is your architecture 6 / 34

Architecture

Layered Code on Demand Client Cached

Stateless Server

HTTP is your architecture 6 / 34

Outline

Introduction

HTTP

Taking it further

Conclusion

HTTP is your architecture 7 / 34

Outline

HTTP
Layered architecture
Request semantics
Stateless server
Code on demand

HTTP is your architecture 8 / 34

Layered architecture

I What is required?
I Request semantic
I Stateless server

Client

Database

Application

HTTP

HTTP is your architecture 9 / 34

Layered architecture

I What is required?
I Request semantic
I Stateless server

Client

Database

Application

HTTP

HTTP is your architecture 9 / 34

Layered architecture

I What is required?
I Request semantic
I Stateless server

Client

Database

Application

Proxy

HTTP

HTTP

HTTP is your architecture 9 / 34

Layered architecture

I What is required?
I Request semantic
I Stateless server

Client

Database

Application

HTTP

HTTP

Load
Balancer

HTTP is your architecture 9 / 34

Outline

HTTP
Layered architecture
Request semantics
Stateless server
Code on demand

HTTP is your architecture 10 / 34

HTTP methods

I Well known
I GET
I POST

I Less known
I PUT
I DELETE

I Mostly unknown
I HEAD
I OPTIONS
I TRACE
I CONNECT

I WebDAV
I MKCOL
I PROPSET
I PROPGET

I Use any you want. . .

HTTP is your architecture 11 / 34

HTTP methods

I Well known
I GET
I POST

I Less known
I PUT
I DELETE

I Mostly unknown
I HEAD
I OPTIONS
I TRACE
I CONNECT

I WebDAV
I MKCOL
I PROPSET
I PROPGET

I Use any you want. . .

HTTP is your architecture 11 / 34

HTTP methods

I Well known
I GET
I POST

I Less known
I PUT
I DELETE

I Mostly unknown
I HEAD
I OPTIONS
I TRACE
I CONNECT

I WebDAV
I MKCOL
I PROPSET
I PROPGET

I Use any you want. . .

HTTP is your architecture 11 / 34

HTTP methods

I Well known
I GET
I POST

I Less known
I PUT
I DELETE

I Mostly unknown
I HEAD
I OPTIONS
I TRACE
I CONNECT

I WebDAV
I MKCOL
I PROPSET
I PROPGET

I Use any you want. . .

HTTP is your architecture 11 / 34

HTTP methods

I Well known
I GET
I POST

I Less known
I PUT
I DELETE

I Mostly unknown
I HEAD
I OPTIONS
I TRACE
I CONNECT

I WebDAV
I MKCOL
I PROPSET
I PROPGET

I Use any you want. . .

HTTP is your architecture 11 / 34

“Safe” HTTP methods

[..] GET and HEAD methods SHOULD NOT have the significance
of taking an action other than retrieval. [RF99]

I . . . so it is safe for spiders to call them.
I Since nothing is modified, the result can be cached.

I Proxies can use that automatically
I Varnish / Squid
I Company application proxies

I Layered Code on Demand Client Cached Stateless Server

HTTP is your architecture 12 / 34

“Safe” HTTP methods

[..] GET and HEAD methods SHOULD NOT have the significance
of taking an action other than retrieval. [RF99]

I . . . so it is safe for spiders to call them.
I Since nothing is modified, the result can be cached.

I Proxies can use that automatically
I Varnish / Squid
I Company application proxies

I Layered Code on Demand Client Cached Stateless Server

HTTP is your architecture 12 / 34

“Safe” HTTP methods

[..] GET and HEAD methods SHOULD NOT have the significance
of taking an action other than retrieval. [RF99]

I . . . so it is safe for spiders to call them.
I Since nothing is modified, the result can be cached.

I Proxies can use that automatically
I Varnish / Squid
I Company application proxies

I Layered Code on Demand Client Cached Stateless Server

HTTP is your architecture 12 / 34

“Safe” HTTP methods

[..] GET and HEAD methods SHOULD NOT have the significance
of taking an action other than retrieval. [RF99]

I . . . so it is safe for spiders to call them.
I Since nothing is modified, the result can be cached.

I Proxies can use that automatically
I Varnish / Squid
I Company application proxies

I Layered Code on Demand Client Cached Stateless Server

HTTP is your architecture 12 / 34

Is your search form broken?

1 <form ac t i on=”/ s e a r ch ” method=”POST”>
2 <i npu t type=” t e x t ” name=”term” />
3 <i npu t type=” submit ” va lue=”Search ! ” />
4 </ form>

I Broken semantics
I Search results may not be cached

I No bookmarking of search results

HTTP is your architecture 13 / 34

Is your search form broken?

1 <form ac t i on=”/ s e a r ch ” method=”POST”>
2 <i npu t type=” t e x t ” name=”term” />
3 <i npu t type=” submit ” va lue=”Search ! ” />
4 </ form>

I Broken semantics
I Search results may not be cached

I No bookmarking of search results

HTTP is your architecture 13 / 34

Is your search form broken?

1 <form ac t i on=”/ s e a r ch ” method=”POST”>
2 <i npu t type=” t e x t ” name=”term” />
3 <i npu t type=” submit ” va lue=”Search ! ” />
4 </ form>

I Broken semantics
I Search results may not be cached

I No bookmarking of search results

HTTP is your architecture 13 / 34

POST vs. PUT

I POST
I . . . is used to request that the origin server accept the entity

enclosed in the request as a new subordinate . . . [RF99]
I Appends to an existing resource!

I e.g. an existing collection of documents
I Examples

I Posting a message to a bulletin board
I Extending a database through an append operation

I PUT
I . . . requests that the enclosed entity be stored under the

supplied Request-URI. [RF99]
I Creates or replaces a resource!
I Examples

I Updating account data using (PUT /users/42)
I Create a new resource with known identifier

HTTP is your architecture 14 / 34

POST vs. PUT

I POST
I . . . is used to request that the origin server accept the entity

enclosed in the request as a new subordinate . . . [RF99]
I Appends to an existing resource!

I e.g. an existing collection of documents
I Examples

I Posting a message to a bulletin board
I Extending a database through an append operation

I PUT
I . . . requests that the enclosed entity be stored under the

supplied Request-URI. [RF99]
I Creates or replaces a resource!
I Examples

I Updating account data using (PUT /users/42)
I Create a new resource with known identifier

HTTP is your architecture 14 / 34

POST vs. PUT

I POST
I . . . is used to request that the origin server accept the entity

enclosed in the request as a new subordinate . . . [RF99]
I Appends to an existing resource!

I e.g. an existing collection of documents
I Examples

I Posting a message to a bulletin board
I Extending a database through an append operation

I PUT
I . . . requests that the enclosed entity be stored under the

supplied Request-URI. [RF99]
I Creates or replaces a resource!
I Examples

I Updating account data using (PUT /users/42)
I Create a new resource with known identifier

HTTP is your architecture 14 / 34

POST vs. PUT

I POST
I . . . is used to request that the origin server accept the entity

enclosed in the request as a new subordinate . . . [RF99]
I Appends to an existing resource!

I e.g. an existing collection of documents
I Examples

I Posting a message to a bulletin board
I Extending a database through an append operation

I PUT
I . . . requests that the enclosed entity be stored under the

supplied Request-URI. [RF99]
I Creates or replaces a resource!
I Examples

I Updating account data using (PUT /users/42)
I Create a new resource with known identifier

HTTP is your architecture 14 / 34

POST vs. PUT

I POST
I . . . is used to request that the origin server accept the entity

enclosed in the request as a new subordinate . . . [RF99]
I Appends to an existing resource!

I e.g. an existing collection of documents
I Examples

I Posting a message to a bulletin board
I Extending a database through an append operation

I PUT
I . . . requests that the enclosed entity be stored under the

supplied Request-URI. [RF99]
I Creates or replaces a resource!
I Examples

I Updating account data using (PUT /users/42)
I Create a new resource with known identifier

HTTP is your architecture 14 / 34

POST vs. PUT

I POST
I . . . is used to request that the origin server accept the entity

enclosed in the request as a new subordinate . . . [RF99]
I Appends to an existing resource!

I e.g. an existing collection of documents
I Examples

I Posting a message to a bulletin board
I Extending a database through an append operation

I PUT
I . . . requests that the enclosed entity be stored under the

supplied Request-URI. [RF99]
I Creates or replaces a resource!
I Examples

I Updating account data using (PUT /users/42)
I Create a new resource with known identifier

HTTP is your architecture 14 / 34

POST vs. PUT

I POST
I . . . is used to request that the origin server accept the entity

enclosed in the request as a new subordinate . . . [RF99]
I Appends to an existing resource!

I e.g. an existing collection of documents
I Examples

I Posting a message to a bulletin board
I Extending a database through an append operation

I PUT
I . . . requests that the enclosed entity be stored under the

supplied Request-URI. [RF99]
I Creates or replaces a resource!
I Examples

I Updating account data using (PUT /users/42)
I Create a new resource with known identifier

HTTP is your architecture 14 / 34

POST vs. PUT

I POST
I . . . is used to request that the origin server accept the entity

enclosed in the request as a new subordinate . . . [RF99]
I Appends to an existing resource!

I e.g. an existing collection of documents
I Examples

I Posting a message to a bulletin board
I Extending a database through an append operation

I PUT
I . . . requests that the enclosed entity be stored under the

supplied Request-URI. [RF99]
I Creates or replaces a resource!
I Examples

I Updating account data using (PUT /users/42)
I Create a new resource with known identifier

HTTP is your architecture 14 / 34

HTML 5 is broken!

Using PUT and DELETE as HTTP methods for the form element
is no longer supported. [vK10]

HTTP is your architecture 15 / 34

Idempotent methods

f (x) = f (f (x))

I Everything but POST has to be idempotent
I Executing the request again, should not change anything.
I This includes PUT and DELETE

I Really useful to just resend request, if one failed due to
network problems

I Idempotence is a useful property in all messaging systems

HTTP is your architecture 16 / 34

Idempotent methods

f (x) = f (f (x))

I Everything but POST has to be idempotent
I Executing the request again, should not change anything.
I This includes PUT and DELETE

I Really useful to just resend request, if one failed due to
network problems

I Idempotence is a useful property in all messaging systems

HTTP is your architecture 16 / 34

Idempotent methods

f (x) = f (f (x))

I Everything but POST has to be idempotent
I Executing the request again, should not change anything.
I This includes PUT and DELETE

I Really useful to just resend request, if one failed due to
network problems

I Idempotence is a useful property in all messaging systems

HTTP is your architecture 16 / 34

Idempotent methods

f (x) = f (f (x))

I Everything but POST has to be idempotent
I Executing the request again, should not change anything.
I This includes PUT and DELETE

I Really useful to just resend request, if one failed due to
network problems

I Idempotence is a useful property in all messaging systems

HTTP is your architecture 16 / 34

Idempotent methods

f (x) = f (f (x))

I Everything but POST has to be idempotent
I Executing the request again, should not change anything.
I This includes PUT and DELETE

I Really useful to just resend request, if one failed due to
network problems

I Idempotence is a useful property in all messaging systems

HTTP is your architecture 16 / 34

HTTP method fail in PHP

I $ GET contains the request parameters

I $ POST contains the request body
I All HTTP requests may contain body and parameters

I Yes, even GET!

I You may want to use something like
I $request->parameters
I $request->body

HTTP is your architecture 17 / 34

HTTP method fail in PHP

I $ GET contains the request parameters

I $ POST contains the request body
I All HTTP requests may contain body and parameters

I Yes, even GET!

I You may want to use something like
I $request->parameters
I $request->body

HTTP is your architecture 17 / 34

HTTP method fail in PHP

I $ GET contains the request parameters

I $ POST contains the request body
I All HTTP requests may contain body and parameters

I Yes, even GET!

I You may want to use something like
I $request->parameters
I $request->body

HTTP is your architecture 17 / 34

HTTP method fail in PHP

I $ GET contains the request parameters

I $ POST contains the request body
I All HTTP requests may contain body and parameters

I Yes, even GET!

I You may want to use something like
I $request->parameters
I $request->body

HTTP is your architecture 17 / 34

Do you speak HTTP?

I GET and HEAD must be supported

I All other methods are optional

I But if you implement them, they must obey to semantics
I Sorry, your website is not HTTP, if you . . .

I . . . are using POST for a search form.
I . . . are using POST for data updates.

HTTP is your architecture 18 / 34

Do you speak HTTP?

I GET and HEAD must be supported

I All other methods are optional

I But if you implement them, they must obey to semantics
I Sorry, your website is not HTTP, if you . . .

I . . . are using POST for a search form.
I . . . are using POST for data updates.

HTTP is your architecture 18 / 34

Do you speak HTTP?

I GET and HEAD must be supported

I All other methods are optional

I But if you implement them, they must obey to semantics
I Sorry, your website is not HTTP, if you . . .

I . . . are using POST for a search form.
I . . . are using POST for data updates.

HTTP is your architecture 18 / 34

Do you speak HTTP?

I GET and HEAD must be supported

I All other methods are optional

I But if you implement them, they must obey to semantics
I Sorry, your website is not HTTP, if you . . .

I . . . are using POST for a search form.
I . . . are using POST for data updates.

HTTP is your architecture 18 / 34

Outline

HTTP
Layered architecture
Request semantics
Stateless server
Code on demand

HTTP is your architecture 19 / 34

Stateless server

I No persistent connection
I Each request contains all information to be processed

I Cookies

I Servers can be exchanged transparently
I Mind the sessions and static data

I Layered Code on Demand Client Cached Stateless Server

HTTP is your architecture 20 / 34

Stateless server

I No persistent connection
I Each request contains all information to be processed

I Cookies

I Servers can be exchanged transparently
I Mind the sessions and static data

I Layered Code on Demand Client Cached Stateless Server

HTTP is your architecture 20 / 34

Stateless server

I No persistent connection
I Each request contains all information to be processed

I Cookies

I Servers can be exchanged transparently
I Mind the sessions and static data

I Layered Code on Demand Client Cached Stateless Server

HTTP is your architecture 20 / 34

Stateless server

I No persistent connection
I Each request contains all information to be processed

I Cookies

I Servers can be exchanged transparently
I Mind the sessions and static data

I Layered Code on Demand Client Cached Stateless Server

HTTP is your architecture 20 / 34

Stateless server

I No persistent connection
I Each request contains all information to be processed

I Cookies

I Servers can be exchanged transparently
I Mind the sessions and static data

I Layered Code on Demand Client Cached Stateless Server

HTTP is your architecture 20 / 34

Drawbacks / Benefits

I Drawbacks
I Users do have state

I Benefits
I Scalability
I Failover
I Simplicity

HTTP is your architecture 21 / 34

Drawbacks / Benefits

I Drawbacks
I Users do have state

I Benefits
I Scalability
I Failover
I Simplicity

HTTP is your architecture 21 / 34

Drawbacks / Benefits

I Drawbacks
I Users do have state

I Benefits
I Scalability
I Failover
I Simplicity

HTTP is your architecture 21 / 34

Drawbacks / Benefits

I Drawbacks
I Users do have state

I Benefits
I Scalability
I Failover
I Simplicity

HTTP is your architecture 21 / 34

Drawbacks / Benefits

I Drawbacks
I Users do have state

I Benefits
I Scalability
I Failover
I Simplicity

HTTP is your architecture 21 / 34

Share nothing!

I PHP itself follows a share nothing architecture
I Clean PHP instance for each request
I By default no shared resources

I It’s your job to obey to it!
I Session storage?
I Database server?
I File access?

I App servers usually suck!

HTTP is your architecture 22 / 34

Share nothing!

I PHP itself follows a share nothing architecture
I Clean PHP instance for each request
I By default no shared resources

I It’s your job to obey to it!
I Session storage?
I Database server?
I File access?

I App servers usually suck!

HTTP is your architecture 22 / 34

Share nothing!

I PHP itself follows a share nothing architecture
I Clean PHP instance for each request
I By default no shared resources

I It’s your job to obey to it!
I Session storage?
I Database server?
I File access?

I App servers usually suck!

HTTP is your architecture 22 / 34

Share nothing!

I PHP itself follows a share nothing architecture
I Clean PHP instance for each request
I By default no shared resources

I It’s your job to obey to it!
I Session storage?
I Database server?
I File access?

I App servers usually suck!

HTTP is your architecture 22 / 34

Share nothing!

I PHP itself follows a share nothing architecture
I Clean PHP instance for each request
I By default no shared resources

I It’s your job to obey to it!
I Session storage?
I Database server?
I File access?

I App servers usually suck!

HTTP is your architecture 22 / 34

Outline

HTTP
Layered architecture
Request semantics
Stateless server
Code on demand

HTTP is your architecture 23 / 34

Do you?

In the code-on-demand style, a client component . . . receives that
code, and executes it locally. [Fie00]

I Do you deliver code on demand?
I You do!

I JavaScript
I HTML is also just code

although not turing complete

I Layered Code on Demand Client Cached Stateless Server

HTTP is your architecture 24 / 34

Do you?

In the code-on-demand style, a client component . . . receives that
code, and executes it locally. [Fie00]

I Do you deliver code on demand?
I You do!

I JavaScript
I HTML is also just code

although not turing complete

I Layered Code on Demand Client Cached Stateless Server

HTTP is your architecture 24 / 34

Do you?

In the code-on-demand style, a client component . . . receives that
code, and executes it locally. [Fie00]

I Do you deliver code on demand?
I You do!

I JavaScript
I HTML is also just code

although not turing complete

I Layered Code on Demand Client Cached Stateless Server

HTTP is your architecture 24 / 34

Do you?

In the code-on-demand style, a client component . . . receives that
code, and executes it locally. [Fie00]

I Do you deliver code on demand?
I You do!

I JavaScript
I HTML is also just code

although not turing complete

I Layered Code on Demand Client Cached Stateless Server

HTTP is your architecture 24 / 34

Do you?

In the code-on-demand style, a client component . . . receives that
code, and executes it locally. [Fie00]

I Do you deliver code on demand?
I You do!

I JavaScript
I HTML is also just code

although not turing complete

I Layered Code on Demand Client Cached Stateless Server

HTTP is your architecture 24 / 34

Do you?

In the code-on-demand style, a client component . . . receives that
code, and executes it locally. [Fie00]

I Do you deliver code on demand?
I You do!

I JavaScript
I HTML is also just code

although not turing complete

I Layered Code on Demand Client Cached Stateless Server

HTTP is your architecture 24 / 34

Security

Code generation is the root cause for webb application security
problems.

I Escape for target context / language (XSS)

HTTP is your architecture 25 / 34

Security

Code generation is the root cause for webb application security
problems.

I Escape for target context / language (XSS)

HTTP is your architecture 25 / 34

Outline

Introduction

HTTP

Taking it further

Conclusion

HTTP is your architecture 26 / 34

Embrace HTTP

Client

Application

Storage

HTTP

HTTP

Load
Balancer

Cache

HTTP

Load
Balancer

Cache

HTTP

HTTP

HTTP

HTTP is your architecture 27 / 34

Embrace HTTP

Client

Application

Storage

HTTP

HTTP

Load
Balancer

Cache

HTTP

Load
Balancer

Cache

HTTP

HTTP

HTTP

Atte
ntio

n,

Single Po
int o

f F
ailu

re
!

HTTP is your architecture 27 / 34

Use HTTP actively

I Semantic HTTP methods

I URIs (address resources)

I Status codes
I Headers

I Cache control
I Content negotiation
I . . .

HTTP is your architecture 28 / 34

What about REST?

I What is REST actually?
I “New” style web services
I Follow HTTP / LCoDC$SS
I Follow resources / concept character of URIs
I Use proper status codes
I HATEOAS

I Hypermedia as the Engine of Application State [Fie00]
I Short: Use hyper links to delegate client

HTTP is your architecture 29 / 34

What about REST?

I What is REST actually?
I “New” style web services
I Follow HTTP / LCoDC$SS
I Follow resources / concept character of URIs
I Use proper status codes
I HATEOAS

I Hypermedia as the Engine of Application State [Fie00]
I Short: Use hyper links to delegate client

HTTP is your architecture 29 / 34

What about REST?

I What is REST actually?
I “New” style web services
I Follow HTTP / LCoDC$SS
I Follow resources / concept character of URIs
I Use proper status codes
I HATEOAS

I Hypermedia as the Engine of Application State [Fie00]
I Short: Use hyper links to delegate client

HTTP is your architecture 29 / 34

What about REST?

I What is REST actually?
I “New” style web services
I Follow HTTP / LCoDC$SS
I Follow resources / concept character of URIs
I Use proper status codes
I HATEOAS

I Hypermedia as the Engine of Application State [Fie00]
I Short: Use hyper links to delegate client

HTTP is your architecture 29 / 34

What about REST?

I What is REST actually?
I “New” style web services
I Follow HTTP / LCoDC$SS
I Follow resources / concept character of URIs
I Use proper status codes
I HATEOAS

I Hypermedia as the Engine of Application State [Fie00]
I Short: Use hyper links to delegate client

HTTP is your architecture 29 / 34

What about REST?

I What is REST actually?
I “New” style web services
I Follow HTTP / LCoDC$SS
I Follow resources / concept character of URIs
I Use proper status codes
I HATEOAS

I Hypermedia as the Engine of Application State [Fie00]
I Short: Use hyper links to delegate client

HTTP is your architecture 29 / 34

Outline

Introduction

HTTP

Taking it further

Conclusion

HTTP is your architecture 30 / 34

Conclusion

Use HTTP!

HTTP is your architecture 31 / 34

Conclusion

Use HTTP, properly!

HTTP is your architecture 31 / 34

Q/A

Questions? Comments? Feedback?

HTTP is your architecture 32 / 34

Thanks for listening

Please rate this talk at
http://joind.in/3502

and (optionally) give us some feedback right now

HTTP is your architecture 33 / 34

http://joind.in/3502

Thanks for listening

Please rate this talk at
http://joind.in/3502

and (optionally) give us some feedback right now

This is very important for . . .

I Speakers

I Organizers

I You!

HTTP is your architecture 33 / 34

http://joind.in/3502

Thanks for listening

Please rate this talk at
http://joind.in/3502

and (optionally) give us some feedback right now

Stay in touch

I Kore Nordmann

I kore@qafoo.com

I @koredn / @qafoo

I Tobias Schlitt

I toby@qafoo.com

I @tobySen / @qafoo

Rent a PHP quality expert:
http://qafoo.com

HTTP is your architecture 33 / 34

http://joind.in/3502
http://qafoo.com

Bibliography I

[Fie00] R. Fielding, Architectural styles and the design of network-based
software architectures, Ph.D. thesis, University of California, Irvine,
USA, 2000.

[RF99] et al. R. Fielding, Hypertext transfer protocol – http/1.1,
http://tools.ietf.org/html/rfc2616, June 1999.

[vK10] Anne van Kesteren, Html5 differences from html4,
http://www.w3.org/TR/2010/WD-html5-diff-20101019/, October
2010.

HTTP is your architecture 34 / 34

http://tools.ietf.org/html/rfc2616
http://www.w3.org/TR/2010/WD-html5-diff-20101019/

	Introduction
	HTTP
	Layered architecture
	Request semantics
	Stateless server
	Code on demand

	Taking it further
	Conclusion

