
Enterprise PHP development

• What does “enterprise” mean?

Speaker

• Kore Nordmann
• Studies computer science at the

University Dortmund
• Working as a Software Developer for eZ

systems on eZ components and eZ
publish

• Maintainer and Developer of Image_3d

Agenda

• Classification of “enterprise”
• Classification of “enterprise PHP”
• Scalable web applications in practice

What does “enterprise” mean?

• Extensibility
• Integratebility
• Flexibility
• Scalability

What does “enterprise PHP” mean?
(1/3)
• Extensibility

• Often neglected topic in PHP
- Bad example: PhpBB

• Multiple approaches for modules in
applications
- Patches
- Classes implementing interfaces or extending

one class
- RPC calls on external applications

• No application independent module
interfaces
- Impossible and application specific

What does “enterprise PHP” mean?
(2/3)
• Integratebility & Flexibility

• Accessing foreign applications
• Use open interface specifications

- XML-RPC

- SOAP

- REST

• PEAR and ZF offer lots of different
implementations for webservices
- Zend_Service_[Amazon|Yahoo]_*

- PEAR::Services_*

• Custom protocols
- Payment_*

• Application integration in existing
services
- LDAP (eZ publish, Horde)
- SAP (multiple appications and interfaces)

What does “enterprise PHP” mean?
(3/3)
• Scalability

• Caching strategies
- Content caching

- Static caching

- Template caching

- Opcode caching

• Database abstraction vs. optimization
- For example: Oracle sometimes behaves

completely different then MySQL (LIKE)

- Denormalize, DataMining, Aggregation

• Session management
- Standard file handler vs. database handler

• Content storage
- SAN vs. Database

Content

• Remember during development
• Content caching
• Normalization
• Session handling
• Binary files
• Server setup

1) What is important during
development?
• Find performance bottlenecks
• Remember content and static caching

from the first second of development
• Abstract each access on external

ressources
• Adds processing overhead
• Enables to change real data source later

• Test your application under high load
• ab (Apache benchmark)

2) Content caching

• No easy solution
• Highly application dependant

• Determine possible caching times for
each part of your content

• Under high load 30s are a very long
timespan

• A lot customers don't know, that 5
minutes are “immediately” enough.
• News
• Statistics

• Use flexible caching classes
• Try to always export static content as

static files

3) Normalization

• Always use normalized databases
• Aggregate data in non normalized

tables
• Forum

- Fame points

- Post statistics

• Most popular $xyz

4) Session handling

• Store session data in database or
filesystem

• File access is always faster than
database access
• Databases are a filesystem on top of a

filesystem
- But, Oracle uses its own partitions

• Databases are accessed through sockets
<> Filesystems are accessed by kernel
calls
- Both can be in memory

• Session in database always requires
connect to database

5) Binary files (1/2)

• Do NOT wrap fileaccess by scripting
languages (like PHP)
• Processing and memory overhead
• Webservers are build to deliver large

files
• Accesscontrol needs to be delegated to

webserver modules
- Lighttpd: mod_secdownload, mod_trigger_b4_dl
- HTTP-Auth against LDAP, ...

• For highly application authorization
delegate file sendout to webserver
• Frees the process / thread and memory
• Lighttpd / Apache: mod_sendfile

5) Binary files (2/2)

• SANs are expensive
• Open standards
• Expensive servers

• NFS is slow and full of locks
• Hard to debug

• Databases are sometimes usefull to
store binary files
• Easy clustering
• Optimized for networking
• Overhead on webserver side

6) Server setup

• Use a fast, tiny webserver
• lighttpd

• Use fastcgi
• lighttpd + PHP-fcgi is about two times

faster than apache + mod_php
• Easy user jailing
• Clustering of fcgi processes

- Connect to fcgi-Instances per socket
- fcgi-Instances may be on external servers
- Native clustering

• Use opcode caches
• APC, xcache, eaccelerator

• Remove includes if possible

Emergency

• Put a proxy in front of your webserver
• Squid (Wikipedia, ...)

• Akamai
• `wget` your site and put static files on a

static webserver

Conclusion
• Design your application with extensibility

in mind on each level of devopment

• Ressources
• http://php.net/
• http://lighttpd.net/
• http://pecl.php.net/package/APC
• http://www.squid-cache.org/
• http://kore-nordmann.de/
• http://talks.php.net/show/ezkey06

• Thanks for listening

http://php.net/
http://lighttpd.net/
http://pecl.php.net/package/APC
http://www.squid-cache.org/
http://kore-nordmann.de/
http://talks.php.net/show/ezkey06

