

Copyright c⃝ 2017 Qafoo GmbH
Published by Qafoo GmbH
Version 2.0.0; Published June 29, 2017
https://qafoo.com/ | <contact@qafoo.com>

https://qafoo.com/
contact@qafoo.com

Contents

1 Introduction
1.1 About This Book 4
1.2 About Qafoo 5
1.3 The Authors 6
1.3.1 Kore Nordmann . 6
1.3.2 Tobias Schlitt . 6
1.3.3 Benjamin Eberlei . 7
1.3.4 Manuel Pichler . 7

2 Clean Code
2.1 Developers Life is a Trade-Off 8
2.1.1 The NoSQL Dilemma . 8
2.1.2 Overengineered State Machines . 9
2.1.3 Hack Hack Hack . 10
2.1.4 Bottom Line . 11

2.2 Never Use null 12
2.2.1 What it is Used For . 12
2.2.2 null as Return Value . 14

c⃝ Qafoo GmbH 2010 - 2017

2.2.3 Summary . 15

2.3 Struct classes in PHP 16
2.3.1 Implementation . 17
2.3.2 Copy on write . 19
2.3.3 Summary . 20

3 Object Oriented Design
3.1 Learn OOD - to unlearn it again 21
3.1.1 Learning OOD the classical way . 21
3.1.2 OOD in fast pace and agile . 22
3.1.3 Refactoring is the key . 23
3.1.4 Learning OOD to unlearn it . 23
3.1.5 Conclusion / TL;DR. 25

3.2 Object lifecycle control 26
3.2.1 Why is this bad? . 26
3.2.2 How can I solve this? . 27
3.2.3 Conclusion . 28

3.3 Ducks Do Not Type 29
3.3.1 Duck Typing . 30
3.3.2 Prototyping. 30
3.3.3 Using Foreign Code . 31
3.3.4 Package Visibility . 32
3.3.5 Conclusion . 32

3.4 Abstract Classes vs. Interfaces 33
3.4.1 Definitions . 33
3.4.2 Classes are Types. 33
3.4.3 interface . 34
3.4.4 Telling Apart . 35
3.4.5 But... 35
3.4.6 Examples & Hints . 36
3.4.7 tl;dr . 37

3.5 ContainerAware Considered Harmful 38
3.5.1 Background . 38
3.5.2 Issues . 38
3.5.3 Conclusion . 41

3.6 Code Reuse By Inheritance 42
3.6.1 Inheritance . 42
3.6.2 Active Record . 42
3.6.3 A Smaller Example . 43
3.6.4 The Helper Method . 44
3.6.5 Testing Private Methods . 45
3.6.6 Depth Of Inheritance Tree (DIT) . 45
3.6.7 Summary . 46

3.7 Utilize Dynamic Dispatch 47
3.8 When to Abstract? 52
3.8.1 Summary . 54

4 Testing
4.1 Finding the right Test-Mix 55
4.1.1 The Test-Mix Tradeoff . 57
4.1.2 Conclusion . 58

4.2 Mocking with Phake 59
4.2.1 Test Doubles Explained . 59
4.2.2 Benefits of Test Doubles . 59
4.2.3 Introduction to Phake . 60
4.2.4 Conclusion . 62

4.3 Testing Effects of Commands With Phake::capture() 63
4.4 Using Mink in PHPUnit 65
4.5 Introduction To Page Objects 68
4.5.1 Groundwork . 68
4.5.2 A First Test . 69
4.5.3 Refactoring The Frontend . 71
4.5.4 Problems With Page Objects . 73

4.5.5 Conclusion . 73

4.6 Database Tests With PHPUnit 74
4.6.1 Removing Data versus Schema Reset . 74
4.6.2 Point of Data Reset . 75
4.6.3 Mocking the Database Away . 77
4.6.4 Conclusion . 77

4.7 Database Fixture Setup in PHPUnit 78
4.7.1 Dump & Insert Live Data . 78
4.7.2 Base Data . 79
4.7.3 Test Data . 79
4.7.4 Conclusion . 81

4.8 Using Traits With PHPUnit 82
4.8.1 An Example . 82
4.8.2 Traits . 83
4.8.3 Whats The Difference? . 84
4.8.4 Summary . 85

4.9 Testing the Untestable 86
4.9.1 So What Can We Do? . 88

4.10 Outside-In Testing and the Adapter and Facade Patterns 92
4.10.1 Conclusion . 97

4.11 Behavior Driven Development 99
4.11.1 Example. 99
4.11.2 Behat . 100
4.11.3 Rationale . 101
4.11.4 Conclusion . 101

4.12 Code Coverage with Behat 102
4.12.1 Preparation. 102
4.12.2 Collecting Code Coverage . 102
4.12.3 Running Tests. 103
4.12.4 Conclusion . 104

4.13 Testing Micro Services 105
4.14 Five Tips to Improve Your Unit Testing 108
4.14.1 1. Be Pragmatic About a "Unit" . 108
4.14.2 2. Test Where the Logic is . 109
4.14.3 3. Continuously Refactor Test Code . 109
4.14.4 4. Build Your Own Set of Utilities . 110
4.14.5 5. Always Write Tests for Bugs. 110

5 Refactoring
5.1 Loving Legacy Code 111
5.2 Refactoring with the Advanced Boy Scout Rule 113
5.3 Extended Definition Of Done 115
5.3.1 Conclusion . 117

5.4 How to Refactor Without Breaking Things 118
5.4.1 Tests . 118
5.4.2 Baby Steps. 119

5.5 Getting Rid of static 121
5.5.1 The Problem. 121
5.5.2 Step 1: Replaceable Singletons . 122
5.5.3 Step 2: Service Locator. 124
5.5.4 Step 3: Dependency Injection . 126
5.5.5 Conclusion . 128

5.6 Refactoring Should not Only be a Ticket 129
5.7 Extracting Data Objects 131
5.7.1 Too Many Parameters . 131
5.7.2 Associative Arrays. 132
5.7.3 Smooth Migration . 133

5.8 Basic Refactoring Techniques: Extract Method 136
5.8.1 Step 1: Identify code fragment to extract. 137
5.8.2 Step 2: Create empty method and copy code . 137
5.8.3 Step 3: Identify undeclared variables that must be arguments 138

5.8.4 Step 4: Identify variables that are still used in old method 138
5.8.5 Step 5: Call new method from original method . 139
5.8.6 Risky Extract Method Checklist . 140
5.8.7 Fin . 140

5.9 How to Perform Extract Service Refactoring When You Don’t Have
Tests 142

5.9.1 Step 1: Create Class and Copy Method . 143
5.9.2 Step 2: Fix Visibility, Namespace, Use and Autoloading. 144
5.9.3 Step 3: Check for Instance Variable Usage . 144
5.9.4 Step 4: Use New Class Inline . 146
5.9.5 Step 5: Inline Method . 146
5.9.6 Step 6: Move Instantiation into Constructor or Setter 147
5.9.7 Step 7: Cleanup Dependency Injection. 147
5.9.8 Fin . 148

5.10 How You Can Successfully Ship New Code in a Legacy Codebase 149
5.10.1 Example 1: Replacing the Backend in a CMS . 149
5.10.2 Example 2: Rewriting a submodule without changing public API 150
5.10.3 Example 3: Github reimplements Merge button. 152
5.10.4 The Process . 152
5.10.5 Conclusion . 157

5.11 Extracting Value Objects 158
5.12 Refactoring Singleton Usage to get Testable Code 162

6 Architecture
6.1 Why Architecture is Important 165
6.1.1 Summary . 166

6.2 Scaling Constraints of Languages 167
6.2.1 Why PHP? . 167
6.2.2 So, Why Not PHP? . 168
6.2.3 Summary . 170

6.3 How To Synchronize a Database With ElasticSearch? 171
6.3.1 Transactions . 171
6.3.2 Changes Feed . 172
6.3.3 Generating Correct Sequence Numbers . 173
6.3.4 Storing The Sequence Number . 174
6.3.5 Conclusion . 175

6.4 Common Bottlenecks in Performance Tests 176
6.4.1 System Test Setup . 176
6.4.2 Stack Analysis . 177
6.4.3 It is Not Always The Database . 177
6.4.4 Summary . 178

6.5 Embedding REST Entities 179
6.5.1 Entities. 179
6.5.2 The Use-Case . 180
6.5.3 Resource Embedding with HAL . 180
6.5.4 Better Resource Embedding . 181
6.5.5 Bottom Line . 182

7 Workflow
7.1 Coding in Katas 183
7.2 Why you need infrastructure and deployment automation 186
7.2.1 Can you make a build in one step?. 186
7.2.2 Do you make daily builds? . 187
7.2.3 Do you use configuration management tools to automate infrastructure? 188
7.2.4 Is the development setup documented and automated? 188
7.2.5 Can you rollout and rollback deployments in one step? 189
7.2.6 Can applications be deployed to a new server setup without changes to the code?

189
7.2.7 Conclusion . 190

1. Introduction

1.1 About This Book

This book is a curated collection of blog posts from the Qafoo Team Blog1. Over
the time we created many blog posts focussing on the topics of Clean Code, Object
Oriented Design, Testing, Refactoring and Software Architecture. To make it easier
for you to consume those blog posts we re-structured them and collected them in
this book.

Many of the topics in this book are covered in our trainings and you can use
this book as a guide after those trainings to read more about topics you particularly
care about or topics not covered in your training – since we tailor our trainings to
the concrete requirements each customer has.

If you are interested in further information on any of the topics in this book get
in contact2 with us or directly request one of our workshops3 to be held on-site, just
for you.

When reading through this book remember that you read blog posts. For every
topic you find a link to the original post where you can leave remarks, the author
and the original publishing date. We’d love to hear back from you on our blog.

1https://qafoo.com/blog
2https://qafoo.com/contact
3https://qafoo.com/services/workshops

c⃝ Qafoo GmbH 2010 - 2017

1.2 About Qafoo 11

1.2 About Qafoo

Qafoo combines deep knowledge with passion for software quality. It is our goal to
impart this passion to our customers through consulting, coaching and workshops.
This enables our customers to create amazing software with sustainable quality.

All experts from Qafoo do not only have a solid training in their field but also
extensive experience from practical application of their knowledge. All of us suc-
cessfully develop open source and commercial software since years.

If you like to get more information about Qafoo we suggest you to visit the fol-
lowing pages:
• Our Customers4

• Possible Workshops5

• Presentations at conference6

You are, of course, always welcome to get in contact with us7.

4https://qafoo.com/clients
5https://qafoo.com/services/workshops/workshops
6https://qafoo.com/resources/presentations
7https://qafoo.com/contact

c⃝ Qafoo GmbH 2010 - 2017

12 Chapter 1. Introduction

1.3 The Authors

The team members from left to right:

1.3.1 Kore Nordmann
Kore Nordmann has a a university degree in computer science and extraordinary
broad experience as a software developer in the professional and open-source PHP
projects. Based on this unique mix of theoretical and practical knowledge, he sup-
ports teams to take the right path in critical software design and architecture deci-
sions. Kore is one of the founders of Qafoo GmbH where he works as an expert
consultant and trainer.

1.3.2 Tobias Schlitt
Tobias Schlitt has a degree in computer science and works in professional PHP-
based web projects since 1999. As an open source enthusiast, he contributed
to various community projects. Tobias is co-founder of Qafoo GmbH which helps
development teams to produce high-quality web application in terms of expert con-
sulting and individual training. Tobias main focus is on software architecture, object
oriented design and automated testing.

c⃝ Qafoo GmbH 2010 - 2017

1.3 The Authors 13

1.3.3 Benjamin Eberlei
Benjamin works at Qafoo GmbH where he is teaching and consulting on software-
quality, refactoring and architecture. Recently he has also founded the Tideways
company, which offers performance monitoring, profiling and exception tracking so-
lutions for PHP. As a project leader of Doctrine he is mentoring the next generation
of ORM developers.

1.3.4 Manuel Pichler
Manuel Pichler is a software architect with extraordinary practical experience ba-
sis. As the creator of some of the most widely used PHP quality assurance tools
(PHPMD, PHP_Depend and Ant Build Commons) he has a vivid passion on static
code analysis, software metrics and other quality assurance related technologies.
Manuel works as an expert consultant and trainer at Qafoo GmbH, of which he is
also a co-founder.

c⃝ Qafoo GmbH 2010 - 2017

2. Clean Code

2.1 Developers Life is a Trade-Off

Kore Nordmann at 27. May, 20151

At Qafoo, we train a lot of people on topics like object oriented software design,
automated testing and more. It happens quite often that an attendee asks questions
like "Which is the best solution for problem class $x?", "What is the optimal tool for
task $y" or "There is a new technology $z, is that the future of web development?".
Some are disappointed when I reply "It depends" or "That does not exist", but that’s
the truth.

There is no silver bullet and one of the most important skills every developer
needs to hone is to assess possibilities and to find the best trade-off for the current
challenge.

To make that point clear I’m giving three examples from my personal experience,
some where it went well and some where it did not.

2.1.1 The NoSQL Dilemma
Choosing a storage system is probably the most common decision to be made in
any web project. For one project we already knew that there will be a large amount
of data, so we started RnD on recent storage solutions and NoSQL was the big

1https://qafoo.com/blog/075_developers_life_trade_off.html

c⃝ Qafoo GmbH 2010 - 2017

2.1 Developers Life is a Trade-Off 15

topic then. Cassandra appeared to suite our needs perfectly from its description.
So we gave it a try and prototyped against it, using a thin class layer that hid the
database detail.

It was a wise decision to create that layer whereas going with Cassandra from
the start was not a very good one. While the database met our expectations, it
crashed multiple times with loosing data in our development VMs and none of us
had a clue, why, or more importantly, how to fix it. So we revised that decision and
eventually went with MySQL and a denormalized schema, where only important
attributes became dedicated table fields and the main data structure was serialized
JSON in blob. That worked fine for several years.

What did we do? We found the solution which promised to fit our requirements
quite well. Luckily, we did not jump blindly on it, but kept it a bit away from the
system and evaluated further. Constraints like "knowledge on maintenance" were
eventually considered and so we made a trade-off between these requirements that
pushed us in contrary directions.

2.1.2 Overengineered State Machines
You don’t need to jump on such a high-level bandwagon to find examples on where
you need to make trade-offs. In one project I created a component to match our
business model against a 3rd party one to use their data in our system. While the
models were similar, a fundamental difference was how it was determined when
data was published and deleted.

That problem appeared perfect for applying a state machine to it to trigger
changes on our side when the 3rd party model changed. So I went the extra mile
by creating an abstract state machine with Node and Transition classes. A transi-
tion was triggered through an abstract Condition and a node fired an Event which
eventually triggered that change in our model. It was beautiful code in my eyes,
with really small classes (1-2 lines executable code). To "ease" configuration and
since I expected frequent changes, I made it configurable in XML.

Some time later, a co-worker needed to check if the implemented logic still
met new requirements. Digging through that, starting from the XML configuration,
running through so many classes to get the complete picture of what it did, took

c⃝ Qafoo GmbH 2010 - 2017

16 Chapter 2. Clean Code

him a large amount of time. It turned out that the logic was fine, but the amount of
time spent re-occured some more times after that experience.

A year later, we needed to finally adjust the logic. But the model did not fit the
new requirement well, so that we needed to implement many additional classes
and the XML configuration became even more complex.

What went wrong? I did not evaluate all available options and pick a good trade-
off for the situation. As a minimal solution, I could have hidden the state processing
behind a class and code it straight with nested if conditions. Maybe that would
have been 40 lines of code, but a good bunch of unit tests could have covered
that. Maybe a solution in between, abstracting only the states and hard-coding the
trigger and transition logic, would have been the optimal trade-off.

So, what’s the moral of the story? Whenever you take a software design de-
cision in your project, there is a ton of possible solutions. Just picking a random,
interesting, clean, ... one is most probably not the right choice. Instead, you need
to check your actual constraints and then find the best trade-off between the possi-
bilities. Which one that is can vary greatly.

2.1.3 Hack Hack Hack
There are times in a project, where the option of just hacking a problem solution into
the core of the system looks viable. Be warned explicitly: only do that with great
care and foresight. In many environments that can lead to stacked up technical
debt and possibly result in a really hard to maintain project.

In that project we had an import workflow which performed time-costly analysis
on the imported data. It worked well as the incoming chunks of data were small.
But then a party registered which provided huge chunks of data and the system
became unresponsive. Not only that their imports were delayed, but it affected all
other involved parties, too. On the other hand, that big-chunk-party did not even
need all the analysis we performed on their data.

A clean solution would have been to create a configuration flag for the kinds of
analysis. Another one would have introduced sharding for the import process, that
was already in the backlog with low priority. Both solutions would have required
too much time, we needed to fix the actual problem immediately. So we hacked a

c⃝ Qafoo GmbH 2010 - 2017

2.1 Developers Life is a Trade-Off 17

condition into a prominent place in the core, skipping the expensive analysis for the
big-chunk-party.

I had an eye on that code quite for a long time, being prepared to refactor it
whenever viable. But there was no need. The code worked fine, nobody needed to
touch it again and the problem was solved. Eventually, the expensive analysis was
not necessary at all anymore, so we removed it and with it the ugly hack.

What did we actually do? We made a trade-off. That one was very much in one
of the possible directions, but because we knew of the potential problems and were
prepared to revise the decision, we could take the risk.

2.1.4 Bottom Line
One of the most important tasks of a developer is to make trade-offs. They occur
wherever you look in your every day life. It is a highly important step to realize and
accept this. And it is important to hone that skill. You need to open your mind for
new technology and techniques, learn and try them wherever you can. But then
you need to step back, analyze the current situation and then find the best trade-off
between all possible approaches. In addition, you need to be able to reflect your
decisions and be prepared to revise them. The plus side: by doing so, you will
surely learn something for all the upcoming trade-offs.

c⃝ Qafoo GmbH 2010 - 2017

18 Chapter 2. Clean Code

2.2 Never Use null

Kore Nordmann at 3. May, 20162

When doing code reviews together with our customers we see a pattern regu-
larly which I consider problematic in multiple regards – the usage of null as a valid
property or return value. We can do better than this.

Let’s go into common use cases first and then discuss how we can improve
the code to make it more resilient against errors and make it simpler to use. Most
issues highlighted are especially problematic when others are using your source
code. As long as you are the only user (which hopefully is not the case) those
patterns might be fine.

2.2.1 What it is Used For
One common use case is setter injection for optional dependencies, like:
class SomeLoggingServ i ce {

private $logger = n u l l ;

public function setLogger (Logger $logger) {
$ th i s −>logger = $logger ;

}
}

The logger will be set in most cases but somebody will forget this when using your
service. Now a second developer enters the scene and writes a new method in this
class using the property $logger. The property is always set in the use cases they
test during development, thus they forget to check for null – obviously this will be
problematic in other circumstances. You rely on methods called in a certain order
which is really hard to document. An internal getLogger() method constructing a
default null logger might solve this problem, but it still might not be used because
the second developer wasn’t aware of this method and just used the property.

In PHP versions < 7 a call to $this->logger->notice(...) will result in a F
atal Error which is particularly bad since the application can’t handle this kind of
errors in a sane way. In PHP 7 those errors are finally catchable but still nothing
you’d expect in this situation.

2https://qafoo.com/blog/083_never_use_null.html

c⃝ Qafoo GmbH 2010 - 2017

2.2 Never Use null 19

What is even worse is debugging this kind of initialization. This is often even
used together with aggregated objects which are required by the aggregating class.
(You should not use setter injection for mandatory aggregates, but it is still used this
way.) Let’s consider the following code now:
class SomeServ i ce {

public function someMethod () {
$ th i s −>mandatoryAggregate−>someOthe rMethod (/ ∗ . . . ∗ /) ;

}
}

When calling someMethod() and the property $mandatoryAggregate is not initial-
ized we get a fatal error, as mentioned. Even if we get a backtrace through XDebug3

or change the code to throw an exception and get a backtrace it is still really hard
to understand why this property is not initialized since the construction of SomeS
ervice usually happens outside of the current callstack but inside the Dependency
Injection Container or during application initialization.

The debugging developer is now left with finding all occurrences where SomeS
ervice is constructed, check if the $mandatoryAggregate is properly initialized and
fix it, if not.

The solution
All mandatory aggregates must always be initialized during construction. If you
want a slim constructor consider a pattern like the following:
class SomeServ i ce {

public function __ cons t ruc t (Aggregate $aggregate , Logger $logger = n u l l) {
$ th i s −>aggregate = $aggregate ;
$ th i s −>logger = $logger ? : new Logger \Nu l l Logger () ;

}
}

The parameter $aggregate now is really mandatory, while the logger is optional
– but it will still always be initialized. The Logger\NullLogger now can be logger
which just throws all log messages away. This way there is no need to care about
checking the logger every time you want to use it.

Use a so called null object if you need a default instance which does nothing.
Other examples for this could be a null-mailer (not sending mails) or a null-cache

3https://xdebug.org/

c⃝ Qafoo GmbH 2010 - 2017

20 Chapter 2. Clean Code

(does not cache). Those null objects are usually really trivial to implement. Even it
costs time to implement those you’ll safe a lot time in the long run because you will
not run in Fatal Errors and have to debug them.

2.2.2 null as Return Value
A similar situation is the usage of null as a return value for methods which are
documented to return something else. It is still commonly used in error conditions
instead of throwing an exception.

It is, again, a lot harder to debug if this occurs in a software you use but you
are not entirely familiar with. The null return might pass through multiple call
layers until it reaches your code which makes debugging that kind of code a journey
through layers of foreign and undiscovered code – sometimes this can be fun but
almost never what you want to do when in a hurry:
class Broken I nnerClass {

public function i nne rMethod () {
/ / . . .
i f ($e r ro r) {

r e t u r n n u l l ;
}
/ / . . .

}
}

class Dispa t ch ingClass {
public function d ispa tch ingMethod () {

r e t u r n $ th is −>broken I nnerClass−>innerMethod () ;
}

}

class MyUsingClass {
public function myB e a u t i f u lMethod () {

$value = $ th is −>d ispa tch ingClass−>d ispa tch ingMethod () ;
$value−>getSomePrope r t y () ; / / F a t a l E r r o r

}
}

Usually there are even more levels of indirection, of course. We live in the age of
frameworks after all.

c⃝ Qafoo GmbH 2010 - 2017

2.2 Never Use null 21

The solution
If a value could not be found do not return null but throw an exception – there
are even built in exceptions for such cases like the OutOfBoundsException, for
example.

In the callstack I can see immediately where something fails. In the optimal
case the exception message even adds meaning and gives some hints of what I
have to fix.

2.2.3 Summary
Using null can be valid inside of value objects and sometimes you just want to
show nothing is there. In most cases null should be either replaced by throwing
an exception or providing a null object which fulfills the API but does nothing. Those
null objects are trivial and fast to develop. The return on investment will be huge
due to saved debugging hours.

c⃝ Qafoo GmbH 2010 - 2017

22 Chapter 2. Clean Code

2.3 Struct classes in PHP

Kore Nordmann at 24. January, 20114

PHP arrays are a wonderful tool and one of the reasons I like PHP. Their ver-
satility makes it possible to easily set up proof of concepts (POC), either used as
hash maps storing multiple keys, or as lists, stacks, trees or whatever you like.

But once you are past the phase of the initial POC, the excessive usage of
arrays and exactly their versatility has some drawbacks: If you see an array type
hint or return documentation, you know nearly nothing about the data structure.
Using arrays as key-value hash maps for storing configuration keys or data sets
you also know nearly nothing about the expected contents of the array.

This is no problem during the initial implementation, but can become a problem
during maintenance - it might not be trivial to find out what the array contains or is
supposed to contain (without dumping it). There are no common ways to document
such array structures nor you get auto-completion from common IDEs. If such
a hash map is filled with data in different locations in your application it even gets
worse. Also, mistyping a key - wether on read or write - creates a serious debugging
hell.

In Apache Zeta Components and in several of my own projects we are using -
so called - struct classes to solve this issue: The struct classes do not define any
methods but just contain documented properties. They just deal as a data container,
similar to a hash map.

There are several benefits and one drawback using this approach. The benefits:
• Struct classes are far easier to document
• Your IDE can provide you with correct auto-completion
• Your IDE even knows the type of each child in a struct allowing you to create

and process deeply nested structures correctly
• You can be sure which properties a passed struct has - no need to check the

availability of each property on access
• Structs can throw exceptions access to non-existent properties

The drawback:

4https://qafoo.com/blog/016_struct_classes_in_php.html

c⃝ Qafoo GmbH 2010 - 2017

2.3 Struct classes in PHP 23

• The structs are objects, which means they are passed by reference. This can
be an issue if you are operating on those structs. I will show an example later.

2.3.1 Implementation
To see what I am talking about let’s take a look at a example base class for structs:
<?php

abstract class S t r u c t
{

public function __get ($proper ty)
{

throw new RuntimeExcept ion (’T r y i ng to get non−e x i s t i n g proper ty ’ .
$proper ty) ;

}

public function __set ($property , $value)
{

throw new RuntimeExcept ion (’T r y i ng to set non−e x i s t i n g proper ty ’ .
$proper ty) ;

}
}

In a struct base class you can implement __get() and __set() so they throw an
exception if an unknown property is accessed. For me PHPs behavior of silently
creating public properties on property write access caused quite some irritations
over time. A typo in a property name and your code does strange things. I like
to get a warning or (even better) an exception for that. Now, let’s take a look at a
concrete struct:
<?php

class L ocat ionS t r u c t extends S t r u c t
{

/ ∗ ∗
∗ @var s t r i n g
∗ /

public $ c i t y ;

/ ∗ ∗
∗ @var s t r i n g
∗ /

public $country ;

c⃝ Qafoo GmbH 2010 - 2017

24 Chapter 2. Clean Code

public function __ cons t ruc t ($ c i t y = n u l l , $country = n u l l)
{

$ th i s −> c i t y = $ c i t y ;
$ th i s −>count ry = $country ;

}
}

The LocationStruct has two documented, public properties. Each one, of course,
could be a struct again. If the LocationStruct is used as a type hint somewhere in
your application or library you now know exactly what data is expected and can cre-
ate a it comfortable, supported by your favorite IDE. The definition of a constructor
is really helpful to easily create new struct instances.

Extending the base struct
There are some sensible extension you probably want to use for the base struct:
As mentioned before the structs are passed by reference, which is not always what
you want. You therefore probably want to implement __clone() in a sensible way,
generically for all your structs:
<?php

abstract class S t r u c t
{

/ / . . .

public function __clone ()
{

foreach ($ t h i s as $proper ty => $value)
{

i f (i s _ ob jec t ($value))
{

$ th i s −>$proper ty = clone $value ;
}

}
}

}

Another functionality you might want to implement, and a good use case of late
static binding5 (LSB) in PHP 5.3, is the __set_state() method, so you can export
your struct using var_export() just like arrays:

5https://qa.fo/book-language_oop5_late-static-bindings

c⃝ Qafoo GmbH 2010 - 2017

2.3 Struct classes in PHP 25

<?php

abstract class S t r u c t
{

/ / . . .

public s t a t i c function __set_ s ta te (array $prope r t i es)
{

$ s t r u c t = new s t a t i c () ;

foreach ($p rope r t i es as $proper ty => $value)
{

$ th i s −>$proper ty = $value ;
}

r e t u r n $ s t r u c t ;
}

}

If you are using __set_state() to ex- and import structs in your application, this is
a good reason to define sensible default values for all constructor arguments.

2.3.2 Copy on write
As mentioned before, one problem with this usage of struct classes is that they are
always passed by reference. It is not entirely obvious why this would be a problem,
but it already caught me some times, so here is a example.

In the Graph component from the Apache Zeta Components6 we, for example,
use a struct class to represent coordinates (ezcGraphCoordinate). Obviously there
are quite some calculations to perform when rendering (beautiful) charts.

Now imagine you want to draw a set of circles at increasing offsets:
$ o f f s e t = new ezcGraphCoord ina te (42 , 23) ;
for ($ i = 0 ; $ i < $shapeCount ; ++ $ i)
{

$d r i ve r −>drawCi r c l e ($coordinate , 10) ;

$o f f se t −>x += 15;
}

The drawCircle() method now might perform additional calculation on the passed
coordinate, for example, because the currently used driver does not use the cen-

6http://zetac.org/Graph

c⃝ Qafoo GmbH 2010 - 2017

26 Chapter 2. Clean Code

ter point, but the top left edge of the circle as a drawing offset. In this case the
method might internally modify the coordinate and thus the offset in the shown loop
would also be modified. Hopefully you got tests for this in place and therefor add
a $offset = clone $offset in the drawCircle() method. This hit me very sel-
domly until now, but it might be an issue you should be aware of when using struct
classes.

2.3.3 Summary
Even requiring slightly more work when writing software, the benefit of struct classes
during the maintenance phase of projects makes them a true winner - in my per-
sonal opinion.

For POCs I tend to still use arrays for structs, but once the software reaches
production quality I tend to convert array structs into struct classes since some time
in the software I write / maintain.

In C#, for example, such struct classes are a language element and differ from
common object exactly in the copy-on-write vs. pass-by-reference behaviour men-
tioned in this post. I would love to see that in PHP but my knowledge of the Zend
Engine is limited and maybe I should bribe a more experienced PHP internals de-
veloper...

Final note
There are other ways to implement struct classes, like using a properties array
instead of public properties, which enable you to perform type checks on property
write access. Those might be discussed in another blog post but would exceed the
purpose of this blog post.

c⃝ Qafoo GmbH 2010 - 2017

3. Object Oriented Design

3.1 Learn OOD - to unlearn it again

Tobias Schlitt at 11. February, 20141

One topic we regularly teach in workshops for our customers is object oriented
design (ODD), i.e. the art of crafting classes/interfaces in a way that the result is
an easy-to-understand, maintainable and flexible code base. With the agile focus
on shipping working software, some might consider the skill of OOD less important.
One popular argument is that quick reaction to change is more important than de-
signing objects and their interaction carefully. I personally look at it the exact other
way around. This blog post summarizes why you need to learn OOD first, in order
to avoid it to some degree again.

3.1.1 Learning OOD the classical way
Back in the days where the waterfall project methodology was most wide spread,
object oriented design was a primary skill for software developers: After analyzing
the tremendous functional specification, lots of class diagrams were created, item-
izing each and every object in order to provide a full way navigation for the actual
implementors.

1https://qafoo.com/blog/064_learn_ood_to_unlearn_it.html

c⃝ Qafoo GmbH 2010 - 2017

28 Chapter 3. Object Oriented Design

Developers needed to understand interaction between objects in perfect detail,
modeling business processes to their long tail and infrastructure alike. Applying a
design pattern wherever possible in a UML diagram was considered the holy grail
in many software development projects back then.

Junior developers those days were left to do the actual implementation of the
upfront design, occasionally leaving a small component unspecified to allow them
to try out the skills they learned from watching the seniors’ design.

One of the results of this way to handle projects was a massive risk to over-
engineer the system, taking away the flexibility for spontaneous change requests
and leading to a long time to market. These are two of the reasons that led to the
agile movement, from a technical perspective - leaving the even more important
social aspects aside here.

3.1.2 OOD in fast pace and agile
With the rise of agile, the way we handle projects changed drastically: Instead
of creating a full system design upfront, teams start with a small set of features,
rolling these out to the user as fast as possible and iteratively refining the software
together with the customer. Shipping working software is one of the values in the
agile manifesto, while clean code is not.

While not directly connected, agility and time to market is also where PHP and
JavaScript have their strengths as a development platform. Both languages do not
enforce a compelling clean code structure, but leave you the option to implement
a hack in order build prototypes quickly. This is both their biggest strength and
weakness at the same time.

As can be seen in many projects, working at the fast feature pace often led to
big ball of mud (BBOM) code bases, which reduced the agility of the project day
by day, eventually leading to the stage where changes are costly and developers
demanded yet another re-write to free themselves of legacy hell. This is what can
be described as under-engineering.

Luckily, the area of automatic testing and clean code rose alike with the demand
for agility, restraining us from just hacking away, in the best case. And especially
unit testing requires you to slice your code carefully into fine-grained objects, which
in turn requires a deep understanding of OOD.

c⃝ Qafoo GmbH 2010 - 2017

3.1 Learn OOD - to unlearn it again 29

3.1.3 Refactoring is the key
The solution to the mismatch of fast change and clean code is the art of refactoring.
Instead of creating a full blown object design upfront, we nowadays let the code flow
for some time until we realize that there is a need for cleanup. We then hopefully
take the time to rip the created code apart carefully and to restructure it into a nicely
crafted object structure, without moving into the direction of over-engineering.

But being able to refactor requires again a deep knowledge of how structures
can be crafted in a clean and maintainable way, how objects should interact to
stay flexible. In addition, a particularly good test coverage is needed to enable
that process of changing the underlying structure of a system without breaking its
business processes (refactoring).

3.1.4 Learning OOD to unlearn it
Today’s software projects require us to react flexible to emerging changes. This can
be achieved by letting the object design of a system emerge instead of attempting
to craft it upfront. Automatic testing and continuous refactoring are the key method-
ologies to master this balance act. Both topics require a deep knowledge about
how objects relate to each other, about how to craft them in a sensible way and
how to slice the code to extract dependencies. But this is essentially what we call
object oriented design.

This comprehension leads to what we experienced with many development
teams during the past years: in order to enable a team to follow the described
development path, knowledge about clean code and various topics object oriented
design (like SOLID and design patterns) is an essential basis. Otherwise, the devel-
opers will not be able to test responsibly and to perform refactorings successfully.

Honing OOD skills requires a pretty good deal of training and practice. Experi-
menting with object relations, trying to get it right from scratch and iterating learning
cycles are absolutely necessary. But once a developer moves in this direction, ev-
idence shows that he automatically begins to over-engineer his code. It is natural
and important to undergo this phase of learning, because it is the only way to build
up experience and finally acquire a intuitive understanding of how objects relate to
each other.

c⃝ Qafoo GmbH 2010 - 2017

30 Chapter 3. Object Oriented Design

Once this level of perception is reached, the developer needs to restrain himself
again. He needs to unlearn parts of what he learned before, in order to let the code
flow in a controlled manner, without planning each and every detail and without
creating a large object oriented design upfront.

"Unlearn" is of course not the ideal term here, because forgetting the knowledge
would be a disaster. Furthermore, refactoring the code requires exactly that know-
how and experience. Assessing which code can safely be let slide until refactoring
is required and encapsulating that code behind a thin and safe abstraction is essen-
tial in order to not end up in a BBOM. Especially for being able to apply a sensible
test mix (which is another complex topic in itself) the latter point is highly important.

So there is no way around that learning process, which is illustrated in the fol-
lowing graphic:

Skills

t

OOD

Refactoring

under-engineering

over-engineering

Of course, undergoing this process takes time, and failures are required to learn
properly. Therefore, junior developers need proper guidance from good seniors -

c⃝ Qafoo GmbH 2010 - 2017

3.1 Learn OOD - to unlearn it again 31

on technical, social and mentoring levels - to go through that process on the job.
Pair programming, coding dojos, code retreats and code review can support this
process and speed it up to some degree.

3.1.5 Conclusion / TL;DR
In order to master agility, fast feature pace and high quality code at the same
time, every developer needs to learn the art of refactoring and automated testing.
This in turn requires a high skill level in object oriented design, which can only be
reached through a good deal of training and practice. Undergoing a phase of over-
engineering during this learning process is natural and even desired to enable the
developer to deliver his full potential.

Qafoo experts can help you with a sound training concept2 to guide your devel-
opers safely on their individual way, giving them a well designed mixture of theoreti-
cal knowledge, participation and practice. We can furthermore provide sustainable
mentoring for your team, providing them with expert advice and constructive feed-
back, enabling them to take the shortest possible path to becoming a professional.

2https://qafoo.com/services/training.html

c⃝ Qafoo GmbH 2010 - 2017

32 Chapter 3. Object Oriented Design

3.2 Object lifecycle control

Kore Nordmann at 5. April, 20113

From time to time I trip over APIs, which do not allow me to control the object
lifecycle of the used objects myself. This is a bad thing, because it breaks with
several concepts of object oriented programming, and forces you back into the dark
ages of class oriented programming4.

The problem I am talking about is that the API expects a class name instead of
an instance (object). The PHP stream wrapper API, for example, let you register a
class for a certain schema:
stream_wrapper_ r e g i s t e r (’ v i r t u a l ’ , ’myV i r t u a l F i l e SystemHandler ’) ;

In the example above a new object of the class myVirtualFileSystemHandler
would be created for each file system operation, by the internal stream wrapper
implementation.

Such class based plugin mechanisms are not uncommon, but do have several
drawbacks I want to outline here - and also provide you with solutions to this very
problem.

3.2.1 Why is this bad?
The main problem with all class-name based APIs is, that it is not possible to inject
further dependencies into the objects resulting from the class name dependency.

Let’s examine this in further detail: When we only pass a class name for depen-
dency injection, there are two ways the component in question is using our class:

1. It only calls static methods (this is bad5).
2. It creates the object internally, itself.

If the object is created internally, the user of the component is not able to inject
additional dependencies into the object just created.

Depending on the API we are interfacing with, the object to be created could
for example need a database connection or something alike. The user of the API
now only has one choice: Introduce a global state, so that the class can access

3https://qafoo.com/blog/020_object_lifecycle_control.html
4https://qa.fo/book-0103_static_considered_harmful
5https://qa.fo/book-0103_static_considered_harmful

c⃝ Qafoo GmbH 2010 - 2017

3.2 Object lifecycle control 33

this global state to fetch a database connection. Since the object is not provided
explicitely with the dependency, there is no way but fetching it from some globally
known place.

The global state can either be a static property, singleton, registry or something
alike - all are global states, and introduce various problems, which are discussed
elsewhere6.

To summarize: Class based APIs force the user to create a global state in his /
her application, if he / she wants to do something non-trivial with your API. It breaks
dependency inversion.

3.2.2 How can I solve this?
In most cases it should be sufficient to let the user pass an object instead of a class
name. If you call methods on that object which require data generated by your code,
you can pass this data as an argument to the called method.

Here we get to something different - a sometimes difficult descision: When
should I pass something as an argument to a method, and when should I pass
dependencies to the constructor of an object? A good rule of thumb is: If an object
requires something to exist and cannot live without it, then use the constructor. For
everything else use method arguments.

This should solve most issues, but for example the PHP stream API does not
just use one object, but wants to create new objects for all kind of use cases. Ev-
erytime you access a stream URL somehow, a new object needs to be created for
that path. (The constructor is only called sometimes, btw. For example a stat() call
on URL does not trigger the constructor, but you get a new object.)

There we have the situation that a parameter is vital to the object (the URL).
The stream wrapper API needs to construct multiple objects and cannot cope with a
single instance we can inject upfront. Therefore you currently specify a class name
and the stream-wrapper implementation creates needed instances of this class for
you. If you now want to maintain connections (HTTP, FTP) or maybe emulate a file
system in memory (PHP variables), you need to introduce a global state, because
there is no way to inject any state into those internally constructed objects.

6https://qa.fo/book-0103_static_considered_harmful

c⃝ Qafoo GmbH 2010 - 2017

34 Chapter 3. Object Oriented Design

The better way for the stream-wrapper-API would be to require an instance of
a factory to be registered for some URL schema. The API can then request a new
object for a given path from the factory. While the factory needs to follow a certain
interface, the implementation is left entirely to the user, who can decide to pass
additional other dependencies to the created object - like a connection handler, or
a data storage.

The user can even decide to re-use objects, if this is really desired. A typical use
for this would be some kind of identity management inside of the factory: Reusing
the same object for the same path. (Note that this might not make sense in case of
the stream wrapper.)

3.2.3 Conclusion
From this elaboration you can learn one very important rule for your API design: Do
not create class based APIs, since they force everybody using your API to create
a global state, sooner or later. Allowing to pass an object or a factory keeps the
user of your API in control of the lifecycle of his objects. He / she can act far more
flexible then.

c⃝ Qafoo GmbH 2010 - 2017

3.3 Ducks Do Not Type 35

3.3 Ducks Do Not Type

Kore Nordmann at 11. July, 20137

Even in ecosystems which generally follow a high standard of code quality I
tend to find public methods in classes which do not originate from an interface or
an abstract class. I think that this is a really bad habit for several reasons I will
explain below. To give this some context, let’s start with a simple example:
abstract class Ht t pC l i e n t
{

public function request ($method , $path , $body = n u l l , array $headers = array ()
) ;

}

class MyHt t pC l i e n t extends Ht t pC l i e n t
{

public function request ($method , $path , $body = n u l l , array $headers = array ()
)

{
/ / . . .

}

public function setCo n f i g u r a t i o n ($key , $value)
{

/ / . . .
}

}

We have an abstract base type for HTTP clients (which could also be an interface
(See: Abstract Classes vs. Interfaces)) and one implementation. Implementations
then sometimes tend to define additional public methods, like setConfiguration()
in this case, for various different reasons. I want to explain why I consider this a
code smell.

Semantically, the main point behind abstract classes and interfaces is to build an
abstraction other components can implement against. In practice, abstract classes
are also often used for code-re-use, but this is also a bad practice and might be a
topic of a different blog post.

To stay with the example above, any other component in the application, which
wants to use an HTTP client, defines a dependency on the abstract type HttpC

7https://qafoo.com/blog/050_ducks_do_not_type.html

c⃝ Qafoo GmbH 2010 - 2017

36 Chapter 3. Object Oriented Design

lient. The actually implementation used would then depend on the application
configuration. This is the basic idea of Dependency Inversion (S.O.L.I.D.), or to say
it with the words of Martin Fowler:

A. High-level modules should not depend on low level modules. Both
should depend on abstractions.

B. Abstractions should not depend upon details. Details should de-
pend upon abstractions.

Abstractions can be both: interface definitions or abstract classes.

3.3.1 Duck Typing
Then there is Duck Typing. Let’s start the explanation with the opposite of Duck
Typing: Java.

If you pass something to any method in Java, you define a type hint for the
value you are expecting. If the type hint is on HttpClient, the compiler verifies that
you only use methods / properties defined by that interface. You cannot (should
not) use the concrete implementation as something else. It does not matter which
concrete instance is passed to the method.

When starting to develop with Java I thought this is horribly annoying. And I still
think it is – more on that later.

Duck Typing on the other hand means, that you can use anything passed to
your method as anything. You usually would check if a method exists and just call
it right away. You do not enforce a base type or a formal interface definition.

In the example above this would mean, that anything which can act as a HTTP
client would implement a method request() and you just go and use those classes
as a HTTP client. The underlying problem here is, of course, that entirely different
concepts also might define a request() method, which then might break a lot.

3.3.2 Prototyping
When developing prototypes (not talking about prototype based object orientation,
even though it also gets interesting there) or Proof Of Concepts the concept of Duck

c⃝ Qafoo GmbH 2010 - 2017

3.3 Ducks Do Not Type 37

Typing is extremely important. And this is one of the reasons I usually prefer PHP
over Java.

In PHP you can pass stuff around as you like and use the full power of duck
typing. Want to see if a couple of components work together well and implement
your business requirement? Want to play with a new library? Want to hack a feature
seconds before a release date? Just do it.

BUT: If you are developing infrastructure components, Open Source libraries or
any code other developers depend on: Please design and use your abstraction as if
a small Java Compiler sits on your shoulder and pours hot coffee over you anytime
you misuse an object.

It is the only way to make code extensible by others. A fact, even advocates
of Duck Typing are aware of is that you must know your software really well, if you
are using Duck Typing. If synonyms occur in method / property names, you can
easily get code behaving in really strange ways. Also you cannot easily identify
your ducks, since there is no clearly documented concept behind it. Wikipedia8

says:

In essence, the problem is that, if it walks like a duck and quacks like
a duck, it could be a dragon doing a duck impersonation. One may not
always want to let dragons into a pond, even if they can impersonate a
duck.

3.3.3 Using Foreign Code
The Open Closed Principle (S.O.L.I.D.) wants us to change the behavior of our
application without modifying code. This requires code to define abstractions which
we can replace in the application configuration.

When using type hints on abstractions in your library you make the user of your
code assume that she / he can just implement a new class based on this abstract
concept and be done. If your code then calls additional methods it will just break.
If it breaks immediately one can fix the code, but often enough it happens that the
code will only break in obscure error conditions. And since a call to an undefined
method even triggers a fatal error this will kill PHP immediately.

8https://en.wikipedia.org/wiki/Duck_Typing

c⃝ Qafoo GmbH 2010 - 2017

38 Chapter 3. Object Oriented Design

And often enough I want to replace such implementations / dependencies in
foreign libraries. The most common thing is, that I want your library to use my
Logger through an adapter, or anything similar. If you then call undocumented
methods on that logger (in a special error condition)...

3.3.4 Package Visibility
There is one case where public methods are OK, even if they are not defined by a
base concept: PHP misses package visibility. It occurs seldom "enough" (to me),
but sometimes you want "internal" access to methods on a package level, even if
this might not be part of the external API. Until we have package visibility in PHP,
from my point of view, it is OK to define additional public methods. But please flag
them clearly, to make sure everyone knows it is not part of the public API, like this:
class MyHt t pC l i e n t extends Ht t pC l i e n t
{

/ ∗ ∗
∗ @private
∗ /

public function setCookie ($key , $value)
{

/ / . . .
}

}

3.3.5 Conclusion
It is fine to employ duck typing. At the end of the day PHP is popular because the
language does not impose any limits on the way you want to work with it.

But if you start with class based object orientation, please do it right. Mixing the
concepts of class based object orientation and other stuff like Duck Typing messes
with everybody’s head. It will break code in obscure situations which might be really
hard to cover by tests.

Abstractions are documentation. The best you can provide for developers. They
are not easy to find, but you should really stay with them, once defined. Interfaces
can, by the way, be used to extend them over time.

c⃝ Qafoo GmbH 2010 - 2017

3.4 Abstract Classes vs. Interfaces 39

3.4 Abstract Classes vs. Interfaces

Kore Nordmann at 2. October, 20129

Features of object oriented languages are often use from a purely technical
perspective, without respect to their actual semantics. This is fine as long as it
works for you, but might lead to problems in the long run. In this article I discuss
the semantical differences between abstract classes and interfaces. I also outline
why following the semantics of those language constructs can lead to better code.

Disclaimer: This is of course kind of artificial. If using the language constructs
in other ways works for you, it’s fine. It can make communication, extension of code
and maintenance of code harder, though.

3.4.1 Definitions
First, we need to differ between interface and interface. When typeset in mono
space I mean the language construct -- otherwise I talk about the public methods
of any object / class. The second one often is also called "public interface", "class
interface" or even "class signature".

3.4.2 Classes are Types
A class denotes a type.

We know that objects consist of internal state and methods to operate on this
state. The interactions between objects are implemented by calling methods on
other, related objects. Those methods might, or might not, modify the internal state
of the called object.

Classes, as they define the blueprints for those objects, define the type of ob-
jects, thus we know how to use an object. When talking about types there are some
natural implications, which apply especially when extending from another class,
which means to create a sub-type. One is the Liskov Substitution Principle10:

“Functions that use pointers or references to base classes must be able
to use objects of derived classes without knowing it.”

9https://qafoo.com/blog/026_abstract_classes_vs_interfaces.html
10http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

c⃝ Qafoo GmbH 2010 - 2017

40 Chapter 3. Object Oriented Design

This basically translates to: "Do not mess up the interface". It is required, so you
can use a sub-type (derived class) without any special knowledge, just by reading
the documentation / interface of the parent class. Imagine a Cache class, from
which you extend a Cache\FileSystem, Cache\Memcached and maybe a Cache\N
ull. You do not want to implement any kind of special handling in every place
where an object of any of those derived classes is used in your application. All of
them should just behave like a Cache. Keep this in mind.

If we can use any sub-type of a type just as the parent type defines, we talk
about Subtype Polymorphism. Something you definitely want to achieve. Abstract
classes are naturally used when you need such a parent type, which requires some
specialization, like the Cache class mentioned above. I’ll get back to why it makes
no sense to extract an interface from this. And yes, you are allowed to define
abstract classes, even if you don’t intend to implement any code already and don’t
have any properties to define.

3.4.3 interface

An interface describes an aspect of the interface of a type.
PHP does not support multiple inheritance, but it allows you to implement any

number of interfaces, right? The reason for this is, that an interface annotates
usage aspects on the interface of a type. The Interface Segregation Principle11

also claims:

“Clients should not be forced to depend upon interfaces that they do not
use.”

This means that a type using another type should only depend on an interface,
which is actually used. Depending on a god class, for example, is the exact opposite.
You would not know which methods are actually called from looking at the injection
signature. But this also implies that the interfaces should be designed small and
task-specific.

To stay in the context of the example mentioned above, a proper interface would
be Cacheable to annotate on certain classes that its instances can be cached. The

11http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

c⃝ Qafoo GmbH 2010 - 2017

3.4 Abstract Classes vs. Interfaces 41

natural counterpart of a Cache, if you want to handle objects. This is a minimal
usage aspect of a class and other classes requiring this interface will most likely,
and may only, use the methods required by this interface. Implementors of this
interface would also not be forced to implement meaningless methods.

3.4.4 Telling Apart
Those definitions are nice, and fluffy -- but what happens if you define an interface
instead of using an abstract class? (This is at least what I see most.)
• You invite others to create god classes

Interfaces do not allow to already provide code or define properties. Their only
"benefit" over abstract classes is that you can implement multiple of them in
a class / type.
So why would you define a Cache interface. Obviously you do not want that
some class implements the Cache logic while also being a Logger and a ORM
-- even all might access the same storage.
While this, in theory, provides more "flexibility" for the future, every usage of
this flexibility would hurt your software design -- a lot.

• You overload interfaces
A common developer pattern is to define a type, and then extract one single
interface from the class interface. Such interfaces do not define a single
usage aspect any more. If someone wants to implement one aspect of this
interface and two or three aspects from some other "interfaces" it would
result in one really big class with dozens of empty methods. Or, even worse,
dozens of implemented methods, which are never used. This would obviously
be wrong.

3.4.5 But...
There is this one popular quote:

“Code against interfaces, not implementations.”

"Interface" is not typeset in mono space. Look it up!

c⃝ Qafoo GmbH 2010 - 2017

42 Chapter 3. Object Oriented Design

To phrase it better, like it is done in the Dependency Inversion Principle12: “De-
pend on abstractions, not on concretions.”. "Interfaces" in the above quote may
very well be abstract classes. Don’t forget about those.

3.4.6 Examples & Hints
Classic examples for proper interfaces would be:
• Cacheable
• Serializeable

I have two mnemonics for people I discuss Object Oriented Design with:
• interface names should end with able or ing.

This is obviously not always true. But ending on able is a strong indicator that
such an interface just annotates one usage aspect.

• interfaces make sense to be implemented in entirely different types.
An interface usually makes sense to be implemented in types, which oth-
erwise have barely anything in common. A prime example again would be
Cacheable or Countable, which even is a proper interface defined in the
SPL.
To come up with a "real-world" example: Let’s consider an interface D
rinkable. You could implement that one on cups, on the sea and maybe
even on humans, if there are vampires around. Otherwise humans, seas and
cups probably do not have that much in common.

Examples for proper abstract classes could be:
• Log(ger)
• Cache

Again I have a mnemonic to help you with the decision:
• An implemented abstract class can stand on its own.

If you implement all remaining abstract methods of an abstract class, you get
a proper member in your world. It does not require any additional methods
to be usable by others. It probably will require some dependencies (like a
storage), but most other objects will happily just call the methods provided by
the abstract class.

12http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

c⃝ Qafoo GmbH 2010 - 2017

3.4 Abstract Classes vs. Interfaces 43

Final hint:
An interfacemust not define a constructor. Never. The same is true for most

abstract classes. By defining a constructor you predefine and limit what depen-
dencies may be injected in implementations. It is very likely to change for different
implementations. But this is actually a topic which deserves its very own blog post.

3.4.7 tl;dr
An interface annotates a usage aspect of a type / class. Do not just extract
interfaces from classes. Use abstract classes, when defining a base type.

c⃝ Qafoo GmbH 2010 - 2017

44 Chapter 3. Object Oriented Design

3.5 ContainerAware Considered Harmful

Tobias Schlitt at 7. October, 201313

A while ago I tweeted14

ContainerAware is the new Singleton.

While many people agreed by retweeting and faving. I feel the need to elaborate
some more on this statement and safe the explaination for the future.

TL;DR: No class of your application (except for factories) should know about the
Dependency Injection Container (DIC).

3.5.1 Background
The ContainerAware interface (actually ContainerAwareInterface, ContainerA
ware is a basic implementation of it) is part of the Symfony215 API16, but a similar
concept is known from many other frameworks and many applications rely on it. It
defines only the one method setContainer(), which allows to inject the DIC into
an object so that it can directly retrieve services from it.

It is most common to have controllers implement this interface. In fact, the
Symfony2 base controllers17 do so and there is a base class for shell commands18

that does it.

3.5.2 Issues
Accessing the DIC in your classes can seriously harm maintainability and code
re-usability in the long run.

13https://qafoo.com/blog/057_containeraware_considered_harmful.html
14https://twitter.com/tobySen/status/378780141826355200
15http://symfony.com
16https://qa.fo/book-ContainerAware
17https://qa.fo/book-Controller
18https://qa.fo/book-ContainerAwareCommand

c⃝ Qafoo GmbH 2010 - 2017

3.5 ContainerAware Considered Harmful 45

Reduced Testability
Unit testing is the most common automatic test method in the PHP world. If you
have the container injected into your objects, this becomes much harder. There are
three strategies to approach testing a class that gets the container injected:

1. Mock the container and make it return the mocked service mocks,
2. Use the container in your test cases and make it return the mocks
3. Mock the subject of test to override the get() method that is commonly used

to access services inside the class.
The first solution actually requires you to create a container mock that basically
does the same thing as the real container. Except for mocking overhead you don’t
win much with this. So, if you are already in the situation that your classes have a
dependency to the DI container, you’re better of with version 2.

If you choose the second variant, you’re formerly not writing a unit test, but an
integration test instead. This is not a problem by default and integration tests are
important, especially if you use an external framework for development. However, if
you intend to write unit tests, you simply don’t in this case, since another class (the
DIC) is put under test.

The third variant is a simple no-go. You should never mock methods of your
subject, because you cannot ensure that the mocked version of the code mimics
what really happens. Your test cases lose a big amount of the safety that they
should actually provide you with. Whenever you feel the need to mock a method of
the test subject, that is a clear sign for the need to refactor (so-called code smell).

Hidden Dependencies
If you go for a real dependency injection approach (my favorite is constructor injec-
tion), you can easily see when a class does to much, just by looking at its depen-
dencies. Think about a constructor like this:
<?php

class UserP r o f i l e Co n t r o l l e r
{

/ / . . .

public function __ cons t ruc t (
UserRepos i t o r y $userRepos i to ry ,
Search $search ,

c⃝ Qafoo GmbH 2010 - 2017

46 Chapter 3. Object Oriented Design

Ma i lGateway $mai lGateway ,
Router $router ,
Ht t pC l i e n t $h t tpCl i e n t ,
Permiss ionServ i ce $permissions

)
{

/ / . . .
}

/ / . . .
}

You can easily spot that there is something fishy. The class receives quite many
dependencies and these do not fit very well together. Some are from the infras-
tructure layer, others seem to be business services and even others correlate with
the MVC structure. If you see this constructor, it’s eminent that there is need for
refactoring. You will note that at the latest when you add another dependency to it.

Now compare that with the following code:
class UserP r o f i l e Co n t r o l l e r extends Con ta ine rAware
{

/ / . . .

public function __ cons t ruc t ()
{

/ / . . .
}

/ / . . .
}

There is no way to see what the actually dependencies of the class are. In order
to see that, you need to go through the code and look for places where the Depen-
dency Injection Container is used to retrieve objects. In real life, nobody will ever
do that, especially if this is hidden behind $this->get(’serviceName’) calls.

Feature Sneak-In
This issue is a direct result of the previous one: If you can, you eventually will. And
by this I mean access whatever service you might think you just need.

With access to the DIC a developer has the freedom to just grab any object and
use it. This might be convenient to implement hacks, if you don’t know where else

c⃝ Qafoo GmbH 2010 - 2017

3.5 ContainerAware Considered Harmful 47

to put a certain functionality when being in a rush. But on the other side of the coin,
there is nothing which forces you to clean up the mess.

A common result is, that more and more business logic is collected in the con-
trollers, making them become huge transaction scripts, which leads to code dupli-
cation and hidden business rules.

3.5.3 Conclusion
Making your classes aware of the DIC is not an option. Even if you really feel you
need to, just don’t do it. To be on the safe side I even recommend to make your
controllers services19.

If you develop Symfony2 based applications and run into the issue of having to
inject too many framework services20 into your controllers, my co-worker Benjamin
has a great post about that in his personal blog.

19https://qa.fo/book-service
20https://qa.fo/book-extending_symfony2_controller_utilities

c⃝ Qafoo GmbH 2010 - 2017

48 Chapter 3. Object Oriented Design

3.6 Code Reuse By Inheritance

Kore Nordmann at 20. January, 201421

3.6.1 Inheritance
To me, inheritance has two properties:
• Defining an is-a relationship
• Making it possible to share code between classes by extending from a com-

mon base class
The is-a relationship between classes is one thing I like to use inheritance for. So, to
me, a concrete Cache - for example a MemcacheCache implementation - extending
from an abstract Cache base class is a very sane thing to do. Implementing an
interface means, in my opinion, adding an additional usage aspect / feature to a
class, while the base class defines the type of a class. Mind: The base class, most
likely, only defines abstract methods and does not provide any implementation in
this case. I discussed this in more detail in a dedicated blog post22, which is why I
skip a detailed explanation now.

The other thing you can use inheritance for is to share code between multiple
classes. A prime example for this is Active Record23, where a concrete record
class (for example a BlogPost) extends from a base class which adds the database
access logic.

I personally think that the latter is one of the worst things you can do in object
oriented design. Bear with me for a moment and let me try to explain why I think
that.

3.6.2 Active Record
With Active Record, the problem is fairly obvious: The base class usually imple-
ments the storage logic, while the extending class is supposed to implement the
business logic and maybe additional table query logic.

21https://qafoo.com/blog/063_code_reuse_by_inheritance.html
22https://qafoo.com/blog/026_abstract_classes_vs_interfaces
23https://en.wikipedia.org/wiki/Active_record

c⃝ Qafoo GmbH 2010 - 2017

3.6 Code Reuse By Inheritance 49

The business logic (or domain logic) is the most important part of your applica-
tion – the stuff you earn your money with. You probably want to test this logic since
you might be broke if it fails too hard.

Unit-testing a class which uses logic from a base class, for example accessing
the database, is a lot of work. The best way is usually to mock all methods (from
the parent class) which access the database and then run the tests on the mocked
subject while correctly simulating the return values from your database. This is
damn tedious.

Not wanting to go into too much detail here, but testing an Active Record class
as-is is often even worse since tests which hit your database are usually damn slow,
harder to set up and harder to keep atomic. But most importantly, unit-tests should
fail for only one reason, and also testing a database access layer will likely make it
a lot harder to locate the exact reason for unit test failures.

3.6.3 A Smaller Example
One of my preferred examples when describing this to others is a mistake in a
component design I made not too many years ago. I wanted to write a little diff
component, which makes it possible to evaluate the line-wise diffs in source code,
but also paragraph and word-wise diffs for wiki articles and blog posts.

When writing the component, I started implementing the most common diff algo-
rithm on top of "tokens", which should allow me to handle all the cases mentioned
before. Once the algorithm worked, I derived from the class, implementing the
different diff flavours:

Diff

LineDiff TextDiff

That worked fine for some time, but once the diff component was integrated into
PHPUnit, Sebastian Bergmann noticed problems with large texts and we realized
that there are better diff algorithms for particular large texts. The LineDiff and

c⃝ Qafoo GmbH 2010 - 2017

50 Chapter 3. Object Oriented Design

TextDiff classes, implementing their respective tokenizing rules, are still fine, but
we wanted to replace the algorithm in the base class depending on the diff use
case. This is, of course, not possible. A better class design would obviously be:

Diff

LineDiff

TextDiff

DiffAlgorithm

ConcreteAlgo

We can now replace the used diff algorithm, test it directly based on simple
token streams, and every concrete Diff implementation (LineDiff, TextDiff, ...)
will still work with all the diff algorithm implementations you can come up with. A
downside, of course, is that creating the Diff object gets slightly more complex, but
this is usually handled by a Dependency Injection Container, anyway.

3.6.4 The Helper Method
The points where Code-Reuse-By-Inheritance still keeps creeping into my code
from time to time are small helper methods. For example for complex data struc-
tures it is so easy to just define a method in the data structure which calculates
some kind of hash, to apply simple transformations or to validate some values. The
next thing you notice is that you will move those methods up in the extension hier-
archy or copy it around (maybe slightly modified).

Why not make it a (single) public method in some Hasher, Validator or Visitor
class? You might be surprised how much easier stuff gets to test and that you might
even be able to re-use that code in even more places. I guess the fear of (many)
classes applies here again, which I consider void. But this is another blog post.

Of course it is valid to have such helper methods during prototyping, but if you
start using such code in multiple places, start testing it or start to put it into produc-
tion you should refactor it to follow the mentioned concerns.

c⃝ Qafoo GmbH 2010 - 2017

3.6 Code Reuse By Inheritance 51

In most cases, those helper methods are also a different concern which you
start mixing into your class. Even the concern seems closely related, it probably
does not hurt to move it somewhere else and make it explicit.

It may happen, though, that people start to over-engineer given these con-
straints. But every developer walks on a very fine line between missing abstraction
and over-engineering all the time, anyway. A good base for a decision could be:
Will it ever make sense to somehow re-use this piece of code or may it be possible
that someone wants to replace this implementation in a similar use case or during
testing?

3.6.5 Testing Private Methods
The urge to test private or protected methods is, in my opinion, a code smell which
should directly lead to refactoring.

Once you separate your concerns and move code you share by inheritance into
its own classes, every non-trivial code will be contained in public methods which
are easy to test. And more importantly: easier to understand.

3.6.6 Depth Of Inheritance Tree (DIT)
Then there is the "Depth of Inheritance Tree" (DIT) metric with a common boundary
value of 5, while the counting even stops at component borders. To me, the maxi-
mum value for this metric should be considered 2. Except for some struct classes24

/ value objects, there is, in my opinion, no reason for more then one level of exten-
sion of a class. If you use inheritance just for defining the _type_ of classes, you
will never extend more than once. If you are tempted to do that, use aggregation
instead and you are probably fine in 99% of all cases.

If you have valid use cases for an inheritance hierarchy greater than two, please
share those with me.

24https://qafoo.com/blog/016_struct_classes_in_php

c⃝ Qafoo GmbH 2010 - 2017

52 Chapter 3. Object Oriented Design

3.6.7 Summary
To me, by now, Code-Reuse-By-Inheritance is a clear code smell. Every time I am
tempted to do this or find this in existing code, I will refactor out the code into a
separate class as soon as possible.

c⃝ Qafoo GmbH 2010 - 2017

3.7 Utilize Dynamic Dispatch 53

3.7 Utilize Dynamic Dispatch

Tobias Schlitt at 16. October, 201425

A while ago I replied to the tweet26 by @ramsey27

Traits are a nice way to provide common functionality to unrelated classes
without using static methods on a global Util class.

with28

Which makes them exactly as evil as static access. Funktionality you
dispatch to becomes irreplaceable destroying a fundament of OO: Dy-
namic dispatch.

I want to use this blog post to illustrate the concept of dynamic dispatch which I
use a lot recently to motivate creating clean OO structures in my trainings. In my
experience, this helps people to understand why we want to write code in this way.
After that I will show why traits are bad in this direction.

Dynamic dispatch is actually an implementation detail of object oriented pro-
gramming languages. To explain it I need to take a little leap back in time and
illustrate the code flow in a classic procedural program:

25https://qafoo.com/blog/072_utilize_dynamic_dispatch.html
26https://twitter.com/ramsey/status/509028110465908737
27https://twitter.com/ramsey
28https://twitter.com/tobySen/status/509040311122022400

c⃝ Qafoo GmbH 2010 - 2017

54 Chapter 3. Object Oriented Design

createUser($user, $password)

log($string, $severity)

createFriendship($from, $to)

fwrite($file, $string)

… …

The graphic shows two procedures which call a shared log() procedure, the
arrows visualize the execution flow of the program. As can be seen, a procedural
program classically works top down. In order to solve a complex task, a procedure
dispatches to other procedures where each fulfills a smaller fraction of the task. It is
important to notice that the procedures to be executed are exactly known at compile
time of the program (simplified). This is what is called a static dispatch.

Imagine you now want to log all friendship related operations to the new Facelog
server, because it generates incredibly useful insights for you. What are your op-
tions to implement this change?

You can a) change the log() procedure itself, i.e. patch it. But this is of course
no real option here, because createUser() would also be affected by this change
and most probably many other modules that use log(). Option b) is to touch the
createFriendship() procedure (and any other friendship related modules) and
change them to use another procedure instead of log(), e.g. facelog(). Following
this approach is viable, but also means quite some work and potential for errors.

In the object oriented (OO) paradigm the situation is different:

c⃝ Qafoo GmbH 2010 - 2017

3.7 Utilize Dynamic Dispatch 55

createFriendship($fromId, $toId)

FriendshipService

createUser($user, $password)

UserService

log($string, $severity)

fwrite($file, $string)

Logger

FileLogger

log($string, $severity)

…

FaceLogger

log($string, $severity)

The most obvious difference here is that there are two types of errors: Black
arrows visualize the actual code flow again, while gray ones indicate object (actually
class) dependencies. The UserService depends on Logger, FileLogger extends
Logger and so on.

And this exactly is the crucial point: At compile time, an object oriented program
typically only knows about the class dependencies. At this stage it is unclear, how
the actual execution flow will be at run-time. It depends upon which particular object
is given to the dependant, which might be influenced by configuration, user-input
and so on. On a technical level, the programming environment decides out of a set
of available method implementations which one is the correct one to use. This is
what we call dynamic dispatch.

So how could you perform the required change in this environment? Of course
you can just give a different object to FriendshipService, which provides the API
defined by the Logger type but talks to Facelog instead of writing to a file. The

c⃝ Qafoo GmbH 2010 - 2017

56 Chapter 3. Object Oriented Design

dynamic dispatch will take care. The nice thing: You neither need to touch the F
riendshipService nor do you need to fear undesired side-effects on UserService
and others by touching the FileLogger.

Now, that is dynamic dispatch: Your execution environment decides at run-time,
which method is actually to be called, based on the actual object reference given
for a type dependency. There is no need to recompile the program to achieve a
change in this dispatching, a different user input or configuration can suffice.

Now take a look at a static method call as shown in the following graphic:

createFriendship($fromId, $toId)

FriendshipService

createUser($user, $password)

UserService

Logger::log($string, $severity)

fwrite($file, $string)

What do you realize? Right, a static method call is actually a procedural call. In-
deed, the dispatch is static in this case: There is no way for you to replace this call
fine grained, except for the two procedural approaches explained further up. When-
ever you introduce a static method call, you throw away the powers that dynamic
dispatch unveils to you.

Now look at the next graphic that shows a trait implementation for the Logger:

c⃝ Qafoo GmbH 2010 - 2017

3.7 Utilize Dynamic Dispatch 57

createFriendship($fromId, $toId)

FriendshipService

createUser($user, $password)

UserService

log($string, $severity)

fwrite($file, $string)

Logger

log($string, $severity) log($string, $severity)

Using a trait copies a piece of code into your class, making it a part itself. How
would you realize the desired change now? True, there is now way to utilize dynamic
dispatch here, but only the procedural approaches work. A trait is static dispatch,
too.

Disclaimers:
1. There is of course much more in the background of this very narrow view on

object oriented mechanics, for example subtype polymorphism.
2. I’m aware that there are concepts in procedural languages to implement a

dynamic dispatch, too, for example function pointers. However, for illustration
purposes, it is helpful to take these out of scope here.

c⃝ Qafoo GmbH 2010 - 2017

58 Chapter 3. Object Oriented Design

3.8 When to Abstract?

Kore Nordmann at 17. May, 201629

One of the most difficult challenges in a developers life is finding the "right"
abstraction, or at least the best one given the current circumstances. The core
problem is that abstraction is a bet on the future development of the software and
we know that future is volatile. The circumstances will change, so will the view on
the best abstraction change.

But there is another dimension which influences this decision: What kind of
software are you developing? When it comes to decisions about Object Oriented
Design we separate between three different types of projects:
• Internal Project

It is just used by you and your co-workers. You are working in a small team.
When you are changing an API you can adapt all code using this API easily –
especially if you are using a Monorepo30 approach.

• Library
There is a common entry point for your library, an interface which everybody
is using. This could be everything from a popular Open Source library to a
company internal library used in multiple teams or projects. Changing the API
is already a no-go because it was develop to fulfill the use-case of the library.
You cannot see who is using this API and what code will break. The only
chance is a new major release for each change to this API.

• Adaptable Product
There are generic software solutions out there which will be adapted by agen-
cies and developers like Wordpress, Magento or similar products. Users of
those products will use any API in the source code of those products to
change the behaviour of the system. You cannot change any API without
breaking someones application.

So how does this influence the decision about abstracting your code? In the first
case (Internal Project) you can delay abstracting code pretty far while in the last
case (Adaptable Product) you should get it right from the very beginning – since
you shouldn’t change anything afterwards.

29https://qafoo.com/blog/084_when_to_abstract.html
30https://qa.fo/book-monorepos

c⃝ Qafoo GmbH 2010 - 2017

3.8 When to Abstract? 59

But, in an Adaptable Product and in Libraries your use case is usually well
defined, thus you know what the interface looks and you can think about it, analyze
it and come up with a sane abstraction. One could even say: You define the use
case with your API, thus your abstraction is fine by definition. Your library and
product will be used in other use cases as well, which you did not consider when
writing the software, but it usually less of an issue to adapt to that later.

Authors of those libraries and software products are often well known and talk
about their code in public. Also this is the code you, as a developer, will see when
learning and trying to improve.

But especially in the area of Internal Projects the circumstances change often
and fast. You will have no idea what the next requirement of the project stakeholders
will be. So, let’s be blatant: Do not abstract! Do not use interfaces or abstract
classes.

OK, sometimes you still should use them. But at least wait until the requirements
get obvious. I, by now, suggest a process like the following:

1. Implement the current requirement in a concrete class
2. Adapt the concrete class to the ever changing requirements
3. If a different implementation for the same use case is required create an ab-

straction, but not earlier
Example: If you are supposed to integrate with some newsletter provider just im-
plement the code in a concrete class. When starting, I assure you, not all final
requirements are provided. There will be some additional requirements even be-
fore the first release of this small part of your application. If you came up with an
abstraction first you’ll have to adapt the abstraction and the concrete class. Also
both will be more complicated since you already thought about making this some-
how generic. Usually with requirements which will not show up because the other
stakeholders will think about different things then you do.

Only when the second and third newsletter provider shows up and you are sup-
posed to connect them with the same classes create an abstraction. Since we are a
lot later in the project you are now better aware of all requirements and have a better
understanding for the actual use-cases and differences between the endpoints.

c⃝ Qafoo GmbH 2010 - 2017

60 Chapter 3. Object Oriented Design

3.8.1 Summary
Trying to follow "best practices" from library development in other projects will lead
to wrong abstractions and increased workload. Do not abstract before you are
sure about the actual requirements and before there is a need to do so. Concrete
classes without interfaces are fine in Internal Projects, while they are not in Libraries
or Adaptable Products.

c⃝ Qafoo GmbH 2010 - 2017

4. Testing

4.1 Finding the right Test-Mix

Benjamin Eberlei at 19. August, 20131

The topic of Test Driven Development (TDD) and unit-testing usually creates
heated discussions among developers. We at Qafoo are not an exception and the
topic how to apply TDD in our daily work regularly leads to heated discussions. One
reason for this is that both TDD and unit-testing combined are by some people seen
dogmatically as the only way to do software development.

This blog post tries to summarize our current state of discussion on TDD, soft-
ware testing and finding the right test-mix. It is written from my own perspective and
all errors in description are mine, not my colleagues’. I also try to review the topic
in context of the recent discussions of others.

Let’s start with Uncle Bob, who is the primary voice of TDD as the only approach
to software development. He recently wrote about this in his article "The startup
trap2" spurring several discussions (HackerNews3 , Storify4, Greg Youngs Blog5).
However, he also acknowledges in a blog post the day later6, that he does not apply

1https://qafoo.com/blog/055_finding_the_right_test_mix.html
2https://qa.fo/book-TheStartUpTrap
3http://martinfowler.com/bliki/TestPyramid.html
4https://qa.fo/book-tdd-and-startups-uncle-bob-vs-nate-et-al
5https://qa.fo/book-tdd-and-startups-uncle-bob-vs-nate-et-al
6https://qa.fo/book-ThePragmaticsOfTDD

c⃝ Qafoo GmbH 2010 - 2017

62 Chapter 4. Testing

TDD dogmatically to every aspect of software development. Notably, he doesn’t
write tests for:
• state of objects, for example getters/setters and attributes themselves.
• GUIs, because they require lots of tinkering and small adjustments to config-

uration variables.
• Third-party libraries
• while experimenting with code (what I would call periods of "Spikes").

Most importantly, check how Uncle Bob never mentions the word unit-test in both
blog posts. This is because TDD is about software design, not about testing your
individual units (objects, functions, ...) or 100% code coverage. We think, TDD
can be applied on any level of the testing pyramid7: the acceptance-, integration-
and unit-test level. Kent Beck describes this in his book "Extreme Programming
explained".

Why do I mention this? We have made the experience first hand that starting
a new project with TDD and mostly unit-tests can actually slow down development
considerably. This happens because during the development of new projects and
features the requirements change frequently. This conflicts with tests locking the
code to the current functionality through high test-coverage. Johann Peter Hart-
mann discussed this topic with Toby8 in an interview on our blog some weeks ago.

Unit-tests are necessary to stabilize your code, but when you know the require-
ments are not stable yet, then having too many unit-tests can be a burden as well. It
is very difficult to write unit-tests that are immune to change, especially if you don’t
know what changes will happen. Combined with a dynamic language like PHP that
has poor automatic refactoring support and you will suddenly see yourself wasting
lots of time adjusting unit-tests to changing requirements.

There are several learnings from this that we try to teach our customers in our
trainings:

1. Don’t focus on unit-tests exclusively. A good test-mix is required and uses
acceptance-, integration- and unit-tests. A "good" ratio for software is some-
thing like 70% unit, 20% integration and 10% acceptance tests.

7http://martinfowler.com/bliki/TestPyramid.html
8https://qafoo.com/blog/051_testing_sweet_spot.html

c⃝ Qafoo GmbH 2010 - 2017

4.1 Finding the right Test-Mix 63

2. During development-spikes, with frequent requirement changes and uncer-
tainty, it can be better to drive the design using acceptance- and integration-
tests instead of unit-tests. Unit-test only those parts of the application that
are mission critical, highly reused parts of the infrastructure (high cohesion)
or stable already.

3. Once the software stabilizes, you should refactor tests from the acceptance-
and integration-levels towards the unit-test-level. This makes the tests run
much faster, less prone to failure due to side-effects, and allows you to write
much more tests for different input combinations and edge-cases. Failures in
unit-tests are also much easier to analyze than failures in acceptance tests.

4. Apply risk management to different components of your software: Having a lot
of unit-tests is only important for those parts of your software that have a high
business value. Features that are less important don’t need the same test-
coverage as those features that generate the majority of the business value.
A few acceptance-tests might already be enough for those less important
components.

5. Learning how to write tests that don’t break on every occasion. This is beyond
the scope of this blog-post.

4.1.1 The Test-Mix Tradeoff
It is important to state that we don’t advocate to stop testing. Instead, we are putting
forth the notion of TDD decoupled from unit-testing and depending on business
value (and risk) instead. This is a tradeoff by reducing the time for refactoring tests
and increasing the time to run tests as well as the risk of failure due to uncovered
code.

This approach to TDD is not a silver bullet, though: If your business doesn’t
allow for periods of stabilization or you wait too long before stabilizing, then you will
end up with an inverted test-pyramid of many slow acceptance tests and just a few
unit-tests or even worse, with no tests at all.

We found that our approach is closely related to the discussion on "Spike and
Stabilize" in Liz Keogh’s blog9 (including the comments), with the difference that we

9https://qa.fo/book-beyond-test-driven-development

c⃝ Qafoo GmbH 2010 - 2017

64 Chapter 4. Testing

suggest using at least acceptance-tests during spikes. Her list of bullet points on
applying TDD is a systematic checklist for the pragmatic choices Uncle Bob had in
his blog-post.

4.1.2 Conclusion
TDD is about design and not about unit-testing and 100% coverage. Using acceptance-
and integration-tests is a valid approach for TDD and serves well during periods of
spikes and frequent requirement changes. This decision trades a slower test suite
and less stability for more flexibility to adjust the code. Neglecting to introduce unit-
tests during code stabilization however might lead your code base to rot in the long
run. Only a decent unit-test-coverage provides a developer with security to change
code on all levels of the application.

c⃝ Qafoo GmbH 2010 - 2017

4.2 Mocking with Phake 65

4.2 Mocking with Phake

Benjamin Eberlei at 13. March, 201310

Update (14.3.2013): Introduced Test Double wording instead of using mock
objects for everything to more cleanly describe the different concepts.

The use of Test Doubles is an important skill to learn when using Test Driven
Development (TDD). Test Doubles allow you to replace dependencies of an object
with lookalikes, much like crash test dummies are used during automobile safety
tests so humans aren’t harmed.

4.2.1 Test Doubles Explained
Creating a test double in PHP involves creating a new class that extends the public
API of the original class with empty methods. You can safely use all methods of
a test double and they will do nothing, rather than calling the original code of the
original class. There are two ways to create these test doubles: You can write them
yourself or use one of the many existing libraries.

I would strongly recommend to use any of the existing libraries that can simplify
and automate this task for you. Technically they work using code-generation at
run-time.

To allow interactions with test doubles there are three ways to configure them in
any library:
• Add expectations of the arguments passed to a method (Verification)
• Add results that are returned from a method-call to the mock object (Stubbing)
• Delegate calls to the original code (Spying)

Test doubles using the first approach are called Mock Objects. Objects of the sec-
ond type are called Stubs, of the third type Spies.

4.2.2 Benefits of Test Doubles
There are many reasons why test doubles are useful:
• Allow units (objects) to be tested in isolation of their dependencies. This is

done by replacing the dependencies with test doubles.

10https://qafoo.com/blog/037_phake.html

c⃝ Qafoo GmbH 2010 - 2017

66 Chapter 4. Testing

• Allow verification of behavior between objects. In contrast to assertions that
can only verify the state of objects in isolation. This makes them very useful
with relation to Behavior Driven Development (BDD) inside your unit-tests.
• Test Doubles are useful to test-drive new interfaces based on required behav-

ior without caring for the implementation at the moment.
That means testdoubles are invaluable to move from state-based object-oriented
programming to a behavioral approach based on sending messages between ob-
jects.

4.2.3 Introduction to Phake
Using Test Doubles in PHPUnit tests means using the built-in MockObjects library11

for quite some years. In the last years two contenders emerged that can be used
as optional dependencies in PHPUnit:
• Mockery by Padraic Brady12

• Phake by Mike Lively13

Both can be installed using Composer and integrated into your projects very easily.
This blog post introduces Phake, because it works quite differently than both

PHPUnit Mock Objects and Mockery:
1. In the well known four phase test14 with Setup, Exercise, Verify, Teardown

both PHPUnit mocks and Mockery require expectations to be part of the
"setup" phase.
This is unfortunate, because mock expectations are much more related to the
"Verify" phase instead. This happens in PHPUnit and Mockery, because they
don’t explicitly differentiate between methods that are mocked (verification)
or stubbed (returning results). Phake introduces a differentiation by requiring
different APIs to be used for configuration.

2. Instead of using strings for method names and builder methods for arguments,
Phake let’s you prototype the method-call in actual PHP code. This simplifies
the mock object configuration considerably and requires much less typing.

11https://github.com/sebastianbergmann/phpunit-mock-objects
12https://github.com/padraic/mockery
13https://github.com/mlively/Phake
14http://xunitpatterns.com/Four%20Phase%20Test.html

c⃝ Qafoo GmbH 2010 - 2017

4.2 Mocking with Phake 67

Let’s see an example containing both mock and stub objects in one test for loading
the weather data for a given location.
<?php

class LoaderTest extends \PHPUn i t _Framework_TestCase
{

public function t e s tGetWeather ()
{

/ / 1 . setup
$logger = \Phake : : mock (’Qafoo \ \Weather \ \ Logger ’) ;
$ f u n c t i o n a l = \Phake : : mock (’Qafoo \ \Weather \ \ Serv ice ’) ;

/ / Stubb ing wi th Phake : : when ()
\Phake : : when ($ f u n c t i o n a l)−>getWeatherForL ocat ion ()−>thenReturn (

new S t r u c t \Weather (’Fa i r ’ , 23 , 0 , ’NW’)
) ;

$ loader = new Loader ($ func t i ona l , $ logger) ;

/ / 2 . exerc ise
$ locatedWeather = $loader−>getWeatherForL ocat ion (

new S t r u c t \ L oca t ion (’Be r l i n ’ , ’Germany ’)
) ;

/ / 3 . v e r i f y
$ th i s −>asser t I nstanceOf (

’Qafoo \ \Weather \ \ S t r u c t \ \ LocatedWeather ’ ,
$ locatedWeather

) ;

/ / V e r i f i c a t i o n wi th Phake : : v e r i f y ()
\Phake : : v e r i f y ($ logger)−>log (’ Fetched weather for B e r l i n Germany . ’) ;

}
}

Using the Phake::when() call and passing a mock object you can prototype what
a method call should return for your code to show a desired behavior. See how we
can just call ->getWeatherForLocation() as a prototype for how the stub behaves
instead of PHPUnits ->method(’getWeatherForLocation’) or Mockerys ->should
Recieve(’getWeatherForLocation’).

Using thenReturn specifies the return value of this method call and completes
the description of how the stub works. If you want to return different values on

c⃝ Qafoo GmbH 2010 - 2017

68 Chapter 4. Testing

consecutive calls, just chain multiple thenReturn calls. You can use thenThrow to
throw exceptions.

Verification is done with Phake::verify() after the tested code was actually
exercised. We again prototype what method calls and which arguments we want
to verify, in this case ->log(’Fetched weather for Berlin Germany’); on the
logger mock.

This is a very simple stubbing and verification example with Phake. Comparable
to PHPUnit and Mockery, we could add more complex expectations:
• Using argument matchers to verify the structure of arguments used in method

calls.
• Checking multiple invocations such as exactly n-times, at least N-times or

others.
• Verify no interaction with a mock happened at all.
• Verify no further interaction happened than the ones already verified.

4.2.4 Conclusion
Phake is a great mocking library and can be easily integrated into PHPUnit. Its new
approach to prototype mocks and stubs and the separation between stubbing and
verification phases is very refreshing and easy to use.

If you want to go into more detail and learn about Phake, you should check out
the extensive documentation15.

15http://phake.digitalsandwich.com/docs/html/

c⃝ Qafoo GmbH 2010 - 2017

4.3 Testing Effects of Commands With Phake::capture() 69

4.3 Testing Effects of Commands With Phake::capture()

Benjamin Eberlei at 8. March, 201616

Today I want to share a simple trick for the excellent Mocking library Phake17 (I
wrote about it before (See: Mocking with Phake)) when testing state on APIs that
don’t return values.

Testing becomes harder when you are using command / query separation in
your code and service operations don’t return values anymore. If your command
method creates objects and passes them down the stack, then you usually want to
make assertions on the nature of the changes.

Take the following example that creates a new Order object:
<?php

class CheckoutHand ler
{

private $orderRepos i t o r y ;
private $productRepos i t o r y ;

public function __ cons t ruc t ($orderRepos i to ry , $productRepos i t o r y)
{

$ th i s −>orderRepos i t o r y = $orderRepos i t o r y ;
$ th i s −>productRepos i t o r y = $productRepos i t o r y ;

}

public function checkout (Checkout $command)
{

$order = new Order () ;
$order−>setAddress ($command−>address) ;

foreach ($command−>product I ds as $id => $amount) {
$product = $ th is −>productRepos i to ry −> f i n d ($ id) ;
$order−>add I tem ($product , $amount) ;

}

$ th i s −>orderRepos i to ry −>save ($order) ;
}

}

16https://qafoo.com/blog/078_phake_capture.html
17http://phake.readthedocs.org/en/2.1/

c⃝ Qafoo GmbH 2010 - 2017

70 Chapter 4. Testing

A "usual" PHPUnit test for this class can only make a single assertion that the Order
Repository is called with an Order object. But we might want know if a product was
correctly assigned.

With Phake::capture($value) we can assign the argument passed to OrderR
epository#save($order) to a variable that is available inside the Unit-Test, ready
to run assertions on.
<?php

class CheckoutHand lerTest extends \PHPUn i t _Framework_TestCase
{

public function t e s tCheckout ()
{

$orderRepos i t o r y = \Phake : : mock (OrderRepos i t o r y : : class) ;
$productRepos i t o r y = \Phake : : mock (ProductRepos i t o r y : : class) ;

$product = new Product () ;
\Phake : : when ($productRepos i t o r y)−> f i n d (42)−>thenReturn ($product) ;

$handler = new CheckoutHand ler ($orderRepos i to ry , $productRepos i t o r y) ;
$handler−>checkout (new Checkout ([

’ product I ds ’ => [42 => 1] ,
’ address ’ => new Address () ,

])) ;

\Phake : : v e r i f y ($orderRepos i t o r y)−>save (\ Phake : : capture ($order)) ;

$ th i s −>asser tEquals (1 , count ($order−>getProducts ())) ;
$ th i s −>asser tSame($product , $order−>getProducts () [0]) ;

}
}

See after the \Phake::capture($order) call, the $order variable contains the ar-
gument that was passed to the OrderRepository from your code.

This argueably reaches into the tested class quite a bit, but when you use Com-
mand / Query separation and London-Style TDD the only way to observe behaviour
and state is mocking. I still think Phake is the best mocking library for PHP and the
capture method is another good argument for it.

c⃝ Qafoo GmbH 2010 - 2017

4.4 Using Mink in PHPUnit 71

4.4 Using Mink in PHPUnit

Benjamin Eberlei at 5. April, 201618

Another day for a short PHPUnit trick. If you want to use PHPunit to control a
browser for functional or acceptence tests, then you can easily do this using the
Mink library. Mink is well known from the Behat community to facilitate Behaviour-
Driven Development (BDD), but it is a standalone library that can be used with
PHPUnit just as easily.

This is more flexible than using dedicated browser abstractions such as Sele-
nium directly from PHPunit, because you can switch between different implementa-
tions or even run tests with multiple implementations using the same code base.

To start install Mink into your PHP project using Composer:
$ composer requ i re behat / mink behat / mink−goutte−d r i v e r −−dev

This will install Mink and the Guzzle/Goutte based Driver to crawl your site using a
very simple cURL based browser abstraction.

Lets start using it for a simple PHPUnit test that verifies Wikipedia Search:
<?php

class Wi k i p e d i a Test extends \PHPUn i t _Framework_TestCase
{

public function t e s tSearch ()
{

$baseU r l = ’ h t t ps : / / en . w ik iped ia . org / w i k i /Main_Page ’ ;

$ d r i v e r = new \Behat \Mink \Dr i v e r \Gou t teDr i v e r () ;
$session = new \Behat \Mink \Session ($ d r i v e r) ;
$session−> s t a r t () ;
$session−> v i s i t ($baseU r l) ;

$page = $session−>getPage () ;
$page−> f i l l F i e l d (’ search ’ , ’PHP ’) ;
$page−>pressBu t ton (’ searchBut ton ’) ;

$content = $session−>getPage ()−>getContent () ;

$ th i s −>asser tConta ins (’PHP: Hype r t ex t Preprocessor ’ , $content) ;
$ th i s −>asser tConta ins (’Rasmus L erdor f ’ , $content) ;

}
}

18https://qafoo.com/blog/081_phpunit_mink_functional_tests.html

c⃝ Qafoo GmbH 2010 - 2017

72 Chapter 4. Testing

Setting up the Driver and Session over and over again can become quite compli-
cated, lets introduce a reusable trait:
<?php

t r a i t MinkSetup
{

private $minkBaseU r l ;

private $minkSession ;

/ ∗ ∗
∗ @before
∗ /

public function setupMinkSession ()
{

$ th i s −>minkBaseU r l = i s s e t ($_SERVER[’MINK_BASE_URL ’])
? $_SERVER[’MINK_BASE_URL ’]
: ’ h t t p : / / l o c a l h o s t :8000 ’ ;

$ d r i v e r = new \Behat \Mink \Dr i v e r \Gou t teDr i v e r () ;
$ th i s −>minkSession= new \Behat \Mink \Session ($ d r i v e r) ;
$ th i s −>minkSession−> s t a r t () ;

}

public function getCu r r e n tPage ()
{

r e t u r n $ th is −>minkSession−>getPage () ;
}

public function getCu r r e n tPageContent ()
{

r e t u r n $ th is −>getCu r r e n tPage ()−>getContent () ;
}

public function v i s i t ($ u r l)
{

$ th i s −>minkSession−> v i s i t ($ th i s −>minkBaseU r l . $ u r l) ;
}

}

The @before annotation is relatively new, it makes sure that the annotated method
is called during each test cases setup phase, whenever we use the MinkSetup trait
in a test class.

This allows us to write the actual test in a much simpler way:
<?php

c⃝ Qafoo GmbH 2010 - 2017

4.4 Using Mink in PHPUnit 73

class Wi k i p e d i a Test extends \PHPUn i t _Framework_TestCase
{

use MinkSetup ;

public function t e s tSearch ()
{

$ th i s −> v i s i t (’ / ’) ;

$page = $ th is −>getCu r r e n tPage () ;
$page−> f i l l F i e l d (’ search ’ , ’PHP ’) ;
$page−>pressBu t ton (’ searchBut ton ’) ;

$content = $ th is −>getCu r r e n tPageContent () ;

$ th i s −>asser tConta ins (’PHP: Hype r t ex t Preprocessor ’ , $content) ;
$ th i s −>asser tConta ins (’Rasmus L erdor f ’ , $content) ;

}
}

If you followed the MinkSetup implementation, you saw the MINK_BASE_URL envi-
ronemnt variable. We can configure this from the phpunit.xml configuration:
<?xml vers ion ="1 .0 " ?>
<phpuni t boo ts t rap =" vendor / auto load . php">

<php>
<env name="MINK_BASE_URL"> h t t p : / / en . w ik iped ia . org / w ik i < / env>

</php>
</ phpuni t >

You can improve this by adding more helper methods onto the MinkSetup trait, for
example by closely following the possibilities that Mink provides inside of Behat
(See MinkContext19).

19https://qa.fo/book-MinkContext

c⃝ Qafoo GmbH 2010 - 2017

74 Chapter 4. Testing

4.5 Introduction To Page Objects

Manuel Pichler at 6. September, 201620

A while ago we wrote about writing acceptance tests (end-to-end tests) with
Mink and PHPUnit (See: Using Mink in PHPUnit). While this is a great set of tools
for various applications such tests tend be susceptible to changes in the frontend.
And the way they break is often hard to debug, too. Today I will introduce you to
Page Objects21 which can solve some of these problems.

The basic idea behind a Page Object is that you get an object oriented represen-
tation of your website. The Page Objects maps the HTML (or JSON) to an object
oriented structure you can interact with and assert on. This is more initial work then
than writing tests with PHPUnit and Mink directly, but it can be worth the effort. I
will introduce you to Page Objects by writing some simple tests for Tideways – our
application performance monitoring platform22.

4.5.1 Groundwork
We will again use the awesome Mink23 to simulate browsers and make it easy to
interact with a website. Thus we are actually re-using the FeatureTest base class
from the Using Mink in PHPUnit (See: Using Mink in PHPUnit) blog post. We have
set up a repository24 where can take a full look at the working example and maybe
even try it out yourself.

You’ll need some tools to set this up – in the mentioned repository it is suffi-
cient to execute composer install. Setting it up in a new projects you’d execute
something like:
composer requ i re −−dev phpuni t / phpuni t behat / mink behat / mink−goutte−d r i v e r

The FeatureTest base class25 handles the basic mink interaction and has already
been discussed in the last blog post so that we can skip it here.

20https://qafoo.com/blog/089_introduction_to_page_objects.html
21http://martinfowler.com/bliki/PageObject.html
22https://tideways.io
23http://mink.behat.org/en/latest/
24https://github.com/QafooLabs/PageObjects
25https://qa.fo/book-FeatureTest

c⃝ Qafoo GmbH 2010 - 2017

4.5 Introduction To Page Objects 75

4.5.2 A First Test
As mentioned we want to test Tideways26 and Tideways requires you to login. Thus
we start with a simple login test:
class LoginTest extends FeatureTest
{

public function t e s t Log I nWi t hWrongPassword ()
{

$page = (new Page \ Login ($ th is −>session))−> v i s i t (Page \ Login : : PATH) ;

$page−>setUser (getenv (’USER ’)) ;
$page−>setPassword (’ wrongPassword ’) ;
$newPage = $page−> l o g i n () ;

$ th i s −>asser t I nstanceOf (Page \ Login : : class , $newPage) ;
}

/ / . . .
}

This test already uses a page object by instantiating the class Page\Login. And by
using this one it makes the test very easy to read. You instantiate the page, visit
() it and then interact with it in an obvious way. We set username and password,
and then call login(). Since we set a wrong password we expect to stay on the
login page.

This already is the nice thing with page objects. The test are readable and this
is something we want to optimize for, right?

One the other hand the logic must be implemented in the Page Object. By
implementing it in a Page Object it is re-usable in other tests as you will see later.
So let’s take a look at this simple Page Object:
use Qafoo \Page ;

class Login extends Page
{

const PATH = ’ / l og in ’ ;

public function setUser ($user)
{

$ th i s −> f i n d (’ i npu t [name="_username "] ’)−>setValue ($user) ;
}

26https://tideways.io

c⃝ Qafoo GmbH 2010 - 2017

76 Chapter 4. Testing

public function setPassword ($password)
{

$ th i s −> f i n d (’ i npu t [name="_password "] ’)−>setValue ($password) ;
}

public function l o g i n ()
{

$ th i s −> f i n d (’ i npu t [name="_submit "] ’)−>press () ;

r e t u r n $ th is −>createFromDocument () ;
}

}

Since we use Mink and implement some logic in the Qafoo\Page base class this
still does not look that complex. What you should note is the fact that the method
setUser() (and alike) hide the interaction with the DOM tree. If the name of those
form fields change you’ll have to change it in one single location. The methods
find() and visitPath() can be found in the Page base class27 and just abstract
Mink a little bit and provide better error messages if something fails.

The login() method will execute a HTTP request to some page. If the login
failed we will be redirected back to the login page (like in the test above), otherwise
we expect to be redirected to the dashboard:
public function t e s tSuccess fu l Log I n ()
{

$page = (new Page \ Login ($ th i s −>session))−> v i s i t (Page \ Login : : PATH) ;

$page−>setUser (getenv (’USER ’)) ;
$page−>setPassword (getenv (’PASSWORD ’)) ;
$newPage = $page−> l o g i n () ;

$ th i s −>asser t I nstanceOf (Page \Dashboard : : class , $newPage) ;
}

We expect the user name and password to be set as environment variables since
there are no public logins for Tideways. If you want to run the tests yourself, just
create an account and provide them like mentioned in the README28.

There is one "magic" method left in the page object shown before – the method
createFromDocument(). The method maps the path of the last request back to

27https://qa.fo/book-Page
28https://github.com/QafooLabs/PageObjects

c⃝ Qafoo GmbH 2010 - 2017

4.5 Introduction To Page Objects 77

Page Object. Something like the router in about every framework would do, but we
map to a Page Object instead of a controller. This method will get more complex
for complex routes but it helps us to make assertions on the resulting page.

4.5.3 Refactoring The Frontend
We recently migrated the dashboard from being plain HTML rendered using Twig
templates on the server into a React.js component. What happens to our page
objects in this case? Let’s take a look at our dashboard tests first:
class DashboardTest extends FeatureTest
{

use He lpe r \User ;

/ / . . .

public function t e s tHasDemoOr g a n i z a t i o n ()
{

$ th i s −>log I n () ;

$page = (new Page \Dashboard ($ th is −>session))−> v i s i t (Page \Dashboard : : PATH) ;

$organ iza t ions = $page−>getOr gan i za t i ons () ;
$ th i s −>asser tAr rayHasKey (’ demo ’ , $o rgan iza t ions) ;
r e t u r n $organ iza t ions [’ demo ’] ;

}

/ / . . .
}

This test again makes assertions on a page object – now Page\Dashboard which
can be instantiated after logging in successfully. The test itself does not reveal in
any way if we are asserting on HTML or some JSON data. It is simple and asserts
that we find the demo organization in the current users account (which you might
need to enable29).

So let’s take a look at the dashboard Page Object, where the magic happens:
class Dashboard extends Page
{

const PATH = ’ / dashboard ’ ;

29https://app.tideways.io/settings/profile

c⃝ Qafoo GmbH 2010 - 2017

78 Chapter 4. Testing

public function getOrga n i za t i ons ()
{

$dataElement = $ th is −> f i n d (’ [data−dashboard] ’) ;
$dataU r l = $dataElement−>getA t t r i b u t e (’ data−dashboard ’) ;

$data = json_decode ($ th is −> v i s i t Path ($dataU r l)−>getContent ()) ;
\PHPUn i t _FrameWork_Asse r t : : asser tNotNu l l ($data , "F a i l e d to parse JSON

response ") ;

$o rgan iza t ions = array () ;
foreach ($data−>organ i za t i ons as $organ iza t ion) {

$organ iza t ions [$organ iza t ion −>name] = new Dashboard \Or g a n i z a t i o n (
$organ iza t ion , $data−>a p p l i c a t i o n s) ;

}

r e t u r n $organ iza t ions ;
}

}

We are currently migrating (step by step) from jQuery modules to React.js com-
ponents and are still using data attributes to trigger loading React.js components
in the UI. Instead of asserting on the HTML, what we would have done when still
rendering the dashboard on the server side, we check for such a data attribute and
load the data from the server. For each organization found on the page we then
return another object which represents a partial (organization) on the page.

Using this object oriented abstraction of the page allows us to transparently
switch between plain HTML rendering and React components while the test will
look just like before. The only thing changed is the page object, but this one can still
power many tests which can make the effort worth it. On top of those Organization
partials we can then execute additional assertions:
/ ∗ ∗
∗ @depends t e s tHasDemoOr g a n i z a t i o n
∗ /

public function t e s tMon th l yRequestL i m i tReached (Page \Dashboard \Or g a n i z a t i o n
$organ iza t ion)

{
$ th i s −>asser tFa lse ($organ iza t ion −>getMon th l yRequestL i m i tReached ()) ;

}

/ ∗ ∗
∗ @depends t e s tHasDemoOr g a n i z a t i o n
∗ /

public function t e s tHasDemoAp p l i c a t i o n s (Page \Dashboard \Or g a n i z a t i o n $organ iza t ion)

c⃝ Qafoo GmbH 2010 - 2017

4.5 Introduction To Page Objects 79

{
$ th i s −>asser tCount (3 , $organ iza t ion −>getAp p l i c a t i o n s ()) ;

}

/ / . . .

4.5.4 Problems With Page Objects
As you probably can guess providing a full abstraction for your frontend will take
some time to write. Those page objects can also get slightly more complex, so that
you might even feel like testing them at some point.

Since end-to-end tests also will always be slow’ish (compared to unit tests) we
advise to only write those tests for critical parts of your application. The tests will
execute full HTTP requests which take time – and nobody runs a test suite which
takes multiple hours to execute.

Also remember that, like with any integration test, you probably need some
means to setup and reset the environment the tests run on. In this simple example
we run the test on the live system and assume that the user has the demo organi-
zation enabled. In a real-world scenario you’d boot up your application (provision a
vagrant box or docker container), reset the database, mock some services, prime
the database and run the tests against such a reproducible environment. This takes
more effort to implement, again.

While the tests are immune to UI changes this way (as long as the same data is
still available) they are not immune to workflow changes. If your team adds another
step to a checkout process, for example, the corresponding Page Object tests will
still fail and you’ll have to adapt them.

4.5.5 Conclusion
Page Objects can be a good approach to write mid-term stable end-to-end tests
even for complex applications. By investing more time in your tests you can get
very readable tests which are easy to adapt to most UI changes.

c⃝ Qafoo GmbH 2010 - 2017

80 Chapter 4. Testing

4.6 Database Tests With PHPUnit

Tobias Schlitt at 4. October, 201630

Most of us do not use PHPUnit solely for Unit Tests but we also write Integration
or Acceptance Tests with PHPUnit. One very common question then is how to
interact with the database correctly in those tests. Let me show you the different
options and their trade offs...

There are multiple aspects of database tests where our decision has impact
on test atomicity and test runtime. All decisions boil down to: More test atomicity
leads to longer test runs, and we can buy test speed by omitting test atomicity. One
might be tempted to immediately favour test atomicity but fast tests are a feature
which is often underappreciated. If your tests are slow (more then 30 seconds or
even taking minutes) developers will not run those tests before each commit any
more – they feel it just takes them too much time. Your tests will still be run on your
Continuous Integration server but even when your tests fail it is annoying to debug
them, because you have to wait so long until the failing test is reached.

4.6.1 Removing Data versus Schema Reset
You have a schema of your database laying around somewhere, right? It should
even be somewhere in your source code repository to be able to initialize a full
build of your application. We prefer using something like DBDeploy31 to maintain
and document changes to our schema but the solution does not really matter. With
a schema you can drop the entire database to clean it up before a test and re-apply
the schema. This works well with MySQL or SQLite but takes a lot of time with
systems like Oracle.

The other idea is to reset the tables your test modified. Since this does not do
any schema changes but just removes data it is usually faster. The most common
implementation is to remove data manually in a tearDown() method in all tables
you know the test modified. The problem now is that your application will change.
This means that the tables data is written into will also change. At some point you’ll
forget removing some data in some table and this will cause a side effect on another

30https://qafoo.com/blog/090_database_tests_with_phpunit.html
31http://dbdeploy.com/

c⃝ Qafoo GmbH 2010 - 2017

4.6 Database Tests With PHPUnit 81

test – a horribly hard to debug side effect. And this only works for new data, it will
not revert changed data.

Some people are adding something like a changed column to each table which
automatically recieves the time of the last change to a row. If you are doing
this you can execute something like DELETEFROM$table WHEREchanged >= $test
StartTime on each table. But then again, this only works for data added in a test
and would remove all rows which were changed in a test.

Summary
Resetting the full schema is the cleanest approach, but also takes the most time.
Resetting a selected number of tables is faster, but also more cumbersome and
error-prone. If you have some kind of change management you might be able to
use that. Especially for large and complex schemas (where you would prefer a
cleaner approach) resetting the full schema often takes far too much time.

4.6.2 Point of Data Reset
Now we know different ways to reset the data in our database, but when should we
do the reset. There are basically three options:
• Before each test
• Before each test class
• Once before the whole test run

Before Each Test
The setUp() method in PHPUnit_Framework_TestCase is the right point to run ini-
tialisations before each test and we can initialize the database here if our test wants
to access the database and clean it up later in the tearDown() method. This way
we preserve the atomicity of our tests. But since a single cleanup can take up to
some seconds this is only feasible for simple and small schemas.

Before Each Test Class
PHPUnit offers the two (static) methods setUpBeforeClass() and tearDownAfter
Class() which are run once before any test in the test case class is executed and
respectively after all tests in the test case class have been executed.

c⃝ Qafoo GmbH 2010 - 2017

82 Chapter 4. Testing

These methods allow us to reset or setup the database once for entire test
case. If you do something like this you must remember that the tests in this test
case depend on each other. The first test might create some row and the second
test then accesses this row and uses it for something. I usually add @depends
annotations on the tests to make this extra obvious. Also the second test will not
work without the first one anyways. You can see an example for such a test case in
our TimePlanner demo project32.

The initialisation of the database happens in the mentioned methods in a base
class for our integration tests33. The methods look slightly more complicated be-
cause the tests are run against three different databases (MySQL, SQLite and
CouchDB) and all are resetting the entire schema using Doctrine.

With this method you cannot easily reorder your tests in a test case anymore,
but you can still run your tests cases in any order, since they are still supposed to
be independent. If you want to debug a single test it still means that you have to
run all tests which it depends on before it – which can be annoying.

Before the whole test run
PHPUnit allows you to specify a bootstrap file, either on the CLI or in the phpunit
.xml. Nowadays this is mostly used to just specify the vendor/autoload.php from
composer, but you can do more in this file. For example you can initialize your
database schema. You can also do this in some build step which is always executed
before each test run or somewhere similar.

This allows you to initialize the database once before all tests. This approach is
supposed to be the fastest because it minimizes database interaction and thus IO.
But there are some drawbacks:
• If you don’t specify the order of your test cases manually the order they are

picked up by PHPUnit might changed depending on your OS or file system.
This can lead to very weird and hard to debug test failures.
• State is leaked between all your tests across your complete test suite. This

again can lead to situations which are very hard to debug.

32https://qa.fo/book-PublicHolidayGatewayTest
33https://qa.fo/book-IntegrationTest

c⃝ Qafoo GmbH 2010 - 2017

4.6 Database Tests With PHPUnit 83

• There will be situations where you can debug one test only when running the
entire test suite because it depends on the state of some random test you
might not even be aware of.

Summary
Except for very small and simple projects it is usually best to initialize the database
before each test class. This seems to be the be best compromise between test
stability and speed for most projects – your mileage might vary.

4.6.3 Mocking the Database Away
Another entirely different option which comes to mind is mocking the entire interac-
tion with your database. But such complex mocks are often error prone and a lot
of effort to implement and maintain. If your database interaction is very simple it
might work for you. In any project with non trivial queries (aggregations, joins, ...)
you probably do not want to walk this path.

In a MySQL project you can think about using a SQLite in-memory database, but
at some point you’ll discover differences between these two database management
systems. And this could mean production bugs which will not be discovered during
testing.

4.6.4 Conclusion
In general you should try to reduce access to global state (like a database) as much
as possible in your tests. But at some point you’ll want to test the interaction with
your database – in this case you must decide for a way which works best for your
project. In most projects the best way for us seems to reset the full schema before
each test case which interacts with the database.

c⃝ Qafoo GmbH 2010 - 2017

84 Chapter 4. Testing

4.7 Database Fixture Setup in PHPUnit

Tobias Schlitt at 15. November, 201634

We already discussed when and how to reset a database between tests (See:
Database Tests With PHPUnit). But on top of that you often need some basic or
more complex data to run the tests against. We discuss different variants and their
respective trade-offs in this post...

4.7.1 Dump & Insert Live Data
The simplest approach - we still see this in the wild - for schema and test data
management is to dump and replay live data for testing purposes. The benefit here
is that you only have to adapt data in one place when the schema changes and it
is really easy to set up. But there are a couple of drawbacks to this approach:
• Large live data sets

The live data usually is "large" – at least a couple of hundred MB (while
database are usually not considered large before reaching TB). It takes a
lot of time to reset a database even with such a dump. You do not want to
spend such an amount of time before each test, test suite or even before each
test run.

• Boundary value test cases
There is often a need for special test cases, like strange characters or other
type of boundary values in your tests. Those data sets might not exist in the
live data so you end up creating this data in your tests on top of the data dump
anyways.

• Data privacy
Depending on your use case and business your developers should not have
access to all live data. There might be sensitive information which should
be locked down on your servers. In this case a live SQL dump is no option.
Especially in Germany we might be required by law to lock certain data away
from certain people.

• Changing data on the live system

34https://qafoo.com/blog/091_database_fixture_setup_in_phpunit.html

c⃝ Qafoo GmbH 2010 - 2017

4.7 Database Fixture Setup in PHPUnit 85

It is obvious that data on the live system changes over time. This can make it
hard to author tests that are stable and reproducible. In addition, tests might
become less meaningful if you need to craft them in a way that they can cope
with changing live data.

Modified Live Data Set
To avoid the problems mentioned above a next step usually is a modified SQL file,
which is smaller and does contain sensible test data, like boundary values or stable
data without any sensitive information for reproducible tests.

The problem which arises now is that you have to adapt two files when you
change the data structure. And the schema and properties of the data will divert
over time – no matter how careful you are. In the end this approach is always hard
to maintain, so what can be done?

First we suggest you implement some kind of sensible schema management
like DBDeploy35, or even Doctrine Migrations if this works for your use-case. In this
post we want to focus on the data / fixture management, though.

4.7.2 Base Data
Most applications require a set of base data, like default or admin users, some
groups and permissions or something similar. This will be same in all installations
(production, staging, development, testing, ...). Depending on your schema man-
agement solution you will be able to insert this data during schema initialization.
With DBDeploy you can just add some INSERT statements with Doctrine you could
use Doctrine data fixtures36 (or even the Symfony bundle37).

4.7.3 Test Data
The more important thing is the test data. Inserting sensible test data is tightly cou-
pled to your test database resetting strategy (See: Database Tests With PHPUnit)
which we discussed earlier.

35http://dbdeploy.com/
36https://github.com/doctrine/data-fixtures
37https://qa.fo/book-index

c⃝ Qafoo GmbH 2010 - 2017

86 Chapter 4. Testing

Before Each Test
When you reset your database before each test you also want to insert the test data
right inside the test. This is very obvious, makes tests easy to read and understand.
In theory this is clearly the best solution. But as mentioned in the referenced blog
post this will cost a lot of time to execute and likely be to slow for any non-trivial
application.

Before Each Test Class
When you reset the database before each test case you can create the data through-
out the test case. An simple common CRUD example could be the following tests:

1. Create a new data set
2. Load data set
3. Fail loading a non-existent data set
4. Load listing (with one item)
5. Delete data set
6. Fail deleting non-existent data set

Those tests depend on each other which should be indicated by using @depends
annotations like in this example from our demo project38.

This approach is still very clean and from reading the test case you can un-
derstand the full context. Another developer will still be able to understand what is
going on. This is a lot harder when the data is inserted in another place, since you’ll
always have to look in multiple places to get the full image. And new developers
might not yet know all the places to look at. Tests which provide all the context you
need to know in one file are very helpful for everybody.

This strategy will get more complex if you have dependent data – like tests for
user permissions, which also require users and groups to exist. You could either
use custom helpers or tools like Alice39 for this.

Before the whole test run
If you decided to only reset the database once before all tests are run you usually
need a more complete data fixture. You will want to fill all tables with some basic

38https://qa.fo/book-PublicHolidayGatewayTest
39https://github.com/nelmio/alice

c⃝ Qafoo GmbH 2010 - 2017

4.7 Database Fixture Setup in PHPUnit 87

data you can work with. Especially in such a case tools like Alice40 are very useful.
By relying on Faker41 you even get sensible looking data without too much custom
work.

4.7.4 Conclusion
The way you initialise your database fixtures depends on your test schema manage-
ment. We suggest to reset schemas at the begin of each test case and creating the
data right in the test case. This proved to be a good compromise between speed,
test (case) atomicity and test readability. Tools like Alice42 and Faker43 can ease
the process of creating data a lot.

40https://github.com/nelmio/alice
41https://github.com/fzaninotto/Faker
42https://github.com/nelmio/alice
43https://github.com/fzaninotto/Faker

c⃝ Qafoo GmbH 2010 - 2017

88 Chapter 4. Testing

4.8 Using Traits With PHPUnit

Kore Nordmann at 29. November, 201644

As we already wrote that "Code Reuse By Inheritance" (See: Code Reuse By
Inheritance) has lots of problems and we consider it a code smell. You should
always aim to use Dependency Injection, most likely Constructor Injection. But with
test cases in PHPUnit we cannot do this because we have no control about how and
when our test cases are created. There are a similar problem in other frameworks,
like we discussed in "Object Lifecycle Control" (See: Object lifecycle control). We
also blogged about traits as a Code Smell (See: Utilize Dynamic Dispatch), but let
me show and explain why they might be fine to use in your test cases.

So in PHPUnit it is common to reuse code by inheritance. Even by now we often
create some base class providing common functionality. This works fine and is OK
if this really defines an "is a"-relationship. Let’s continue with an example from our
Page Object test repository45. The patterns described here are usually not required
for Unit Tests (which you should always also write) but mostly for integration or
functional tests.

4.8.1 An Example
The example repository46 implements functional tests for a website using the Page
Object pattern (See: Introduction To Page Objects). This means that the tests
access a website and assert on its contents, try to fill forms, submit them and click
links. Such tests are a useful part of your test mix (See: Finding the right Test-Mix),
but should never be your only tests.

Let’s see the options for code reuse we employ in this little test project – and
the reasoning behind it. We start with a simple test case:
class LoginTest extends FeatureTest
{

public function t e s t Log I nWi t hWrongPassword ()
{

$page = (new Page \ Login ($ th is −>session))−> v i s i t (Page \ Login : : PATH) ;

44https://qafoo.com/blog/092_using_traits_with_phpunit.html
45https://github.com/QafooLabs/PageObjects
46https://github.com/QafooLabs/PageObjects

c⃝ Qafoo GmbH 2010 - 2017

4.8 Using Traits With PHPUnit 89

$page−>setUser (getenv (’USER ’)) ;
$page−>setPassword (’ wrongPassword ’) ;
$newPage = $page−> l o g i n () ;

$ th i s −>asser t I nstanceOf (Page \ Login : : class , $newPage) ;
}

/ / . . .
}

This test case extends from a base class FeatureTest to re-use its functionality.
The base class uses PHPUnits setUp() method to setup and start the mink test
driver which will act as a browser to access the website. And it provides a default
tearDown() method to reset the browser state again.

In this case the inheritance defines a clear "is a" relationship with the Feature
Test and it overwrites default methods in the PHPUnit stack which should be over-
written in any feature test. The FeatureTest again extends an IntegrationTest
which is empty in this example but normally would provide access to the application
stack to reset a database, access random services or something similar. We just
do not need anything like this in this little test project. Since functional tests can be
considered a superset of integration tests this is fine again and provides common
functionality which belongs to all tests of this type.

4.8.2 Traits
Let’s take a look at a slightly more complex test case now:
class DashboardTest extends FeatureTest
{

use He lpe r \User ;

/ / . . .

public function t e s tHasDemoOr g a n i z a t i o n ()
{

$ th i s −>log I n () ;

$page = (new Page \Dashboard ($ th is −>session))−> v i s i t (Page \Dashboard : : PATH) ;

$organ iza t ions = $page−>getOr gan i za t i ons () ;
$ th i s −>asser tAr rayHasKey (’ demo ’ , $o rgan iza t ions) ;
r e t u r n $organ iza t ions [’ demo ’] ;

c⃝ Qafoo GmbH 2010 - 2017

90 Chapter 4. Testing

}

/ / . . .
}

In this case we using the Helper\User trait to include some functionality – it pro-
vides the logIn() method which is used in the test testHasDemoOrganization().
Not every feature test might need this aspect and in "normal" software you would
provide such helpers through constructor injection. But since we do not have any
control on the test case creation we include the code using a trait.

The trait enables code reuse – we can use it any test case which requires login.
The trait extracts this concern and we do not clutter every test case requiring login
with this kind of code.

4.8.3 Whats The Difference?
The trait helps us in this example, the code looks clean, so you might want to ask:
Why would traits ever be considered a code smell?

One of the most important reasons is that in a test case there probably won’t
be a reason to change a dependency without adapting the code (Open Closed
Principle). In other words: There is no reason for dynamic dispatch.

A trait establishes a dependency to another class which is defined by the name
of the trait (instead of an instance of some class which could be a subtype). There
is no easy way to change the actually used implementation from the outside. If you
include a LoggerTrait there is no way to change the used LoggerTrait, during
tests or when the requirements change, without changing code. Traits establish a
static dependency which is hard to mock and hard to replace during runtime or
configuration.

But we will never mock our test cases, right? And if the use cases change we
will change the test cases. This can happen a lot as compared to unit tests.

Especially (Open Source) libraries and extensible software commonly has the
requirement that people should be able to change the behaviour without changing
the code. Most likely because they do not have direct access to the code or it would
have side effects to other usages of the code. But nobody uses your test cases in
such a way, thus you are "allowed" to sin in here – at least a little bit.

c⃝ Qafoo GmbH 2010 - 2017

4.8 Using Traits With PHPUnit 91

And there are no other options. This, generally, can be another reason to use
traits. Traits are often an option when refactoring legacy software to temporarily
use common code before we can migrate to sensible dependency injection. Being
a code smell they even help knowing about places which are still not done.

4.8.4 Summary
In tests traits can be a great tool to reuse common code, while we still consider
traits a code smell in almost every other case.

c⃝ Qafoo GmbH 2010 - 2017

92 Chapter 4. Testing

4.9 Testing the Untestable

Manuel Pichler at 2. May, 201747

A long time ago I wrote a blog post about Testing file uploads with PHP48 where I
have used a CGI PHP binary and the PHP Testing Framework (short PHPT), which
is still used to test PHP itself and PHP extensions.

Since the whole topic appears to be still up-to-date, I would like to show a dif-
ferent approach how to test a fileupload in PHP in this post. This time we will use
PHP’s namespaces instead of a special PHP version to test code that utilizes in-
ternal functions like is_uploaded_file() or move_uploaded_file(). So let’s start
with some code under test example source:
namespace Qafoo \Blog ;

class UploadExample
{

protected $ ta rge t ;

public function __ cons t ruc t (s t r i n g $ ta rge t)
{

$ th i s −> t a r g e t = r t r i m ($ ta rge t , ’ / ’) . ’ / ’ ;
}

public function handle (s t r i n g $name) : vo id
{

i f (f a l s e === i s _uploaded_ f i l e ($_F I LES[$name] [’ tmp_name ’])) {
throw new F i l eNotFoundExcept ion () ;

}

$moved = move_uploaded_ f i l e (
$_F I LES[$name] [’ tmp_name ’] ,
$ th i s −> t a r g e t . $_F I LES[$name] [’ name ’]

) ;
i f (f a l s e === $moved) {

throw new F i l eNotMovedExcept ion () ;
}

}
}

Even if we can mockout the magic $_FILES super global variable that we use here::
public function handle (array $ f i l e s , s t r i n g $name) : vo id

47https://qafoo.com/blog/102_testing_the_untestable.html
48https://qa.fo/book-013_testing_file_uploads_with_php

c⃝ Qafoo GmbH 2010 - 2017

4.9 Testing the Untestable 93

{
i f (f a l s e === i s _uploaded_ f i l e ($ f i l e s [$name] [’ tmp_name ’])) {

throw new F i l eNotFoundExcept ion () ;
}

$moved = move_uploaded_ f i l e (
$ f i l e s [$name] [’ tmp_name ’] ,
$ th i s −> t a r g e t . $ f i l e s [$name] [’ name ’]

) ;
i f (f a l s e === $moved) {

throw new F i l eNotMovedExcept ion () ;
}

}

we use the internal functions is_uploaded_file() and move_uploaded_file(),
which work one some internal request data structure that we cannot access nor
modify. Despite this internal handling we still can at least test the negative path:
namespace Qafoo \Blog ;

use PHPUn i t \ Framework \ TestCase ;

class UploadExampleTest extends TestCase
{

/ ∗ ∗
∗ @expectedExcept ion \Qafoo \Blog \ F i l e NotFoundExcept ion
∗ /

public function t e s tHandleThrowsF i l eNotFound () : vo id
{

$ f i l e s = [
’ f i l e _ i n v a l i d ’ => [

’name ’ => ’ foo . t x t ’ ,
’ tmp_name ’ => ’ / tmp / php42up23 ’ ,
’ type ’ => ’ t e x t / p la in ’ ,
’ s ize ’ => 42 ,
’ e r ro r ’ => 0

]
] ;

$upload = new UploadExample (sys_get_temp_ d i r ()) ;
$upload−>handle ($ f i l e s , ’ f i l e _ i n v a l i d ’) ;

}
}

But it’s impossible to write tests for the happy path of the handle() method.

c⃝ Qafoo GmbH 2010 - 2017

94 Chapter 4. Testing

4.9.1 So What Can We Do?
We can use a small trick that utilizes namespaces and PHP’s lookup behavior for
functions to inject/mock our own implementations of the two functions during the
tests.

Let’s have a look at how PHP resolves functions within namespaced source
code. In the following example both calls will invoke the same internal function
is_uploaded_file(), ...
namespace Qafoo \Blog {

var_dump(i s _uploaded_ f i l e (’ t es t ’)) ;
var_dump (\ i s _uploaded_ f i l e (’ t es t ’)) ;

}

... while in this example the first call will call our own implementation of is_uploaded
_file() and the second call still invokes the internal function:
namespace Qafoo \Blog {

function i s _uploaded_ f i l e ($name) {
r e t u r n (’ awesome ’ === $name) ;

}

var_dump(i s _uploaded_ f i l e (’ t es t ’)) ;
var_dump (\ i s _uploaded_ f i l e (’ t es t ’)) ;

}

This happens because PHP first makes a function lookup in the local namespace
for all function calls that don’t have a leading \ and only if no local declaration exists
it makes a lookup in the global namespace. For us that means we have now found
an approach to mock out the internal functions in our test case, because we can
overwrite the two upload functions in the namespace:
namespace Qafoo \Blog ;

function i s _uploaded_ f i l e ($tmpName) : bool
{

r e t u r n i n _array ($tmpName, [’ / tmp / php42up23 ’ , ’ / tmp / php23up17 ’]) ;
}

function move_uploaded_ f i l e ($tmpName, $to) : bool
{

r e t u r n i n _array ($tmpName, [’ / tmp / php42up23 ’]) ;
}

And our final test case that tests all execution paths will look like:

c⃝ Qafoo GmbH 2010 - 2017

4.9 Testing the Untestable 95

namespace Qafoo \Blog ;

requ i re __DIR__ . ’ /UploadExample . php ’ ;

use PHPUn i t \ Framework \ TestCase ;

class UploadExampleTest extends TestCase
{

private $ f i l e s = [
’ va l i d ’ => [

’name ’ => ’ foo . t x t ’ ,
’ tmp_name ’ => ’ / tmp / php42up23 ’ ,

] ,
’ i n v a l i d ’ => [

’name ’ => ’ bar . t x t ’ ,
’ tmp_name ’ => ’ / tmp / php42up17 ’ ,

] ,
’move_ f a i l ’ => [

’name ’ => ’ baz . t x t ’ ,
’ tmp_name ’ => ’ / tmp / php23up17 ’ ,

] ,
] ;

/ ∗ ∗
∗ @expectedExcept ion \Qafoo \Blog \ F i l e NotFoundExcept ion
∗ /

public function t e s tHandleThrowsF i l eNotFound () : vo id
{

$upload = new UploadExample (sys_get_temp_ d i r ()) ;
$upload−>handle ($ th i s −> f i l e s , ’ i n v a l i d ’) ;

}

/ ∗ ∗
∗ @expectedExcept ion \Qafoo \Blog \ F i l e NotMovedExcept ion
∗ /

public function t e s tHandleThrowsF i l eNotMoved () : vo id
{

$upload = new UploadExample (sys_get_temp_ d i r ()) ;
$upload−>handle ($ th i s −> f i l e s , ’move_ f a i l ’) ;

}

/ ∗ ∗
∗
∗ /

public function t e s tHappyPath () : vo id
{

$upload = new UploadExample (sys_get_temp_ d i r ()) ;

c⃝ Qafoo GmbH 2010 - 2017

96 Chapter 4. Testing

$upload−>handle ($ th i s −> f i l e s , ’ va l i d ’) ;

$ th i s −>addToAs s e r t i o nCount (1) ;
}

}

That’s it, now you know how to write fast and reliable test for code that handles file
uploads.

But wait, why have I titled this post with "Testing The Untestable"? Because this
provides you much much more than just testing file uploads: It gives you a new and
powerful testing toolbox. Imagine you are using ext/filter or you are using any of
the file functions to access an external service. All this can be mocked out with this
technique, like here:
namespace Acme \Serv i ces ;

class Ex t e r n a lDataPr o v i d e r
{

private $apiU r l = ’ h t t p : / / ap i . example . com/ v / 2 . 1 / ’ ;

public function get I tems () : array
{

/ / . . .
$data = f i l e _get_contents ($ th i s −>apiU r l) ;
/ / . . .

}
}

namespace Acme \Serv i ces ;

use PHPUn i t \ Framework \ TestCase

class Ex t e r n a lDataPr o v i d e rTest extends TestCase
{

public function t e s tGet I tems () : vo id
{

/ / . . .
}

}

function f i l e _get_contents ($path) {
i f (preg_match (’~^ h t t ps ? : / / ~ ’ , $path) {

/ / Load some f i x t u r e here
}
/ / C a l l the o r i g i n a l here

c⃝ Qafoo GmbH 2010 - 2017

4.9 Testing the Untestable 97

r e t u r n \ f i l e _get_contents ($path) ;
}

This isn’t something new and was already possible in 2010 when I wrote the original
post, but I hope this gives you a powerful tool.

c⃝ Qafoo GmbH 2010 - 2017

98 Chapter 4. Testing

4.10 Outside-In Testing and the Adapter and Facade Patterns

Benjamin Eberlei at 5. July, 201649

We at Qafoo are big fans of outside-in testing as described in the book "Growing
Object-Oriented Software, Guided by Tests50" (Steve Freeman and Nat Pryce). As
part of our workshops on Test-Driven Development we explain to our customers51

how testing from the outside-in can help find the right test-mix.
The technique puts a focus on test-driven-development, but instead of the tra-

ditional approach starts at the acceptance test level. The first test for a feature
is an acceptance test and only then the feature is implemented from the outside
classes first (UI and controllers), towards the inner classes (model, infrastructure).
Mocks are used to describe roles of collaborators when starting to write tests for
the outside classes. When a class is tested, the roles described by interfaces (See:
Abstract Classes vs. Interfaces) are implemented and the testing cycle starts again
with mocks for the collaborators.

Outside-In testing leads to interfaces that are written from what is useful for the
client object using them, in contrast to objects that are composed of collaborators
that already exist. Because at some point we have to interact with objects that exist
already, we will need three techniques to link those newly created interfaces/roles
to existing code in our project:

1. The adapter pattern, mostly for third-party code
2. The facade pattern, mostly to structure your own code into layers
3. Continuous refactoring of all the interfaces and implementations

This blog post will focus on the facade adapter pattern as one of the most important
ingredient to testable code.

Even if very well tested, APIs of third party libraries or frameworks are usually
not suited for projects using any form of automated testing, either because using
them directly requires setting up external resources (I/O) or mocking them is com-
plex, maybe even impossible.

warning

49https://qafoo.com/blog/087_outside_in_testing_adapter_pattern.html
50http://www.growing-object-oriented-software.com/
51https://qafoo.com/blog/051_testing_sweet_spot.html

c⃝ Qafoo GmbH 2010 - 2017

4.10 Outside-In Testing and the Adapter and Facade Patterns 99

Side Fact: This even affects libraries that put a focus on testing, such as
Doctrine2, Symfony2 or Zend Framework. The reason is that libraries of-
ten provide static APIs, fluent APIs, facades with too many public meth-
ods or complex object interactions with law-of-demeter violations.

Take a common use-case, importing data from a remote source into your own
database. In a Symfony2 project with Doctrine and Guzzle as supporting libraries,
the feature could easily be implemented as a console command, using only the
third-party code and some glue code of our own:
<?php
namespace Acme \ProductBundle \Command;

class I mportProductCommand extends Con ta ine rAwareCommand
{

protected function con f igu re () { / ∗ omi t ted ∗ / }

protected function execute (I nput I n te r face $input , Ou tpu t I n te r face $output)
{

$ c l i e n t = $ th is −>getCon ta ine r ()−>get (’ guzzle . h t t p _ c l i e n t ’) ;
$ e n t i t yManager = $ th is −>getCon ta ine r ()−>get (’ doc t r i ne . orm . defaul t_ e n t i t y _

manager ’) ;

$request = $ c l i e n t −>get (’ h t t p : / / remote . source / products . xml ’) ;
$response = $request−>send () ;

$products = $ th is −>parseResponse ($response) ;

foreach ($products as $product) {
$ e n t i t yManager−> p e r s i s t ($product) ;

}

$ e n t i t yManager−> f l u s h () ;
}

protected function parseResponse ($response) { / ∗ ∗ omi t ted ∗ / }
}

Looks simple, but in the real world, you can safely assume there is quite some
complexity in parseResponse and possibly even more logic inside the loop over all
the $products.

In this scenario, the code is completely untestable, just by combining the APIs
of Guzzle, Doctrine and Symfony.

c⃝ Qafoo GmbH 2010 - 2017

100 Chapter 4. Testing

Lets take a different approach, starting with the highest level description of the
feature as a test written in Gherkin for Behat:

Scenar io : I mport Products
Given a remote serv i ce wi th products :

| name | d e s c r i p t i o n | p r i ce
| A | Nice and shiny | 100
| B | Rusty , but cheap | 10

When I impor t the products
Then I should see product "A" i n my product l i s t i n g
Then I should see product "B" i n my product l i s t i n g

This will be our acceptance (or end-to-end) test that will use as many external
systems and I/O as possible. We might need to mock data from the remote product
service, but when possible we should use the real data. This test will require the
UI to be done as well as the necessary database and remote system APIs and
therefore will fail until we have implemented all the code necessary. So lets focus
on the code directly with our first unit-test and lets imagine how we want the code
to be used:
<?php
namespace Cata log ;

class I mportProductTest extends \PHPUn i t _Framework_TestCase
{

public function t e s t I mportTwoProducts ()
{

$remoteCata log = \Phake : : mock (’Ca ta log \RemoteCata log ’) ;
$productGateway = \Phake : : mock (’Ca ta log \ProductGateway ’) ;

$productA = $ th is −>createSampleProduct () ;
$productB = $ th is −>createSampleProduct () ;

\Phake : : when ($remoteCata log)−>fe t ch ()−>thenReturn (array ($productA ,
$productB)) ;

$ impor ter = new Product I mporter ($productGateway) ;
$ importer −>impor t ($remoteCata log) ;

\Phake : : v e r i f y ($productGateway)−>s to re ($productA) ;
\Phake : : v e r i f y ($productGateway)−>s to re ($productB) ;

}
}

c⃝ Qafoo GmbH 2010 - 2017

4.10 Outside-In Testing and the Adapter and Facade Patterns 101

When we fetch 2 products from the $remoteCatalog then those products should be
passed to the $productGateway, our storage system. To describe the use-case in
this simple way, we have abstracted RemoteCatalog and ProductGateway, which
will act as facades used in our ProductImporter. The implementation is very sim-
ple:
<?php

namespace Cata log ;

class Product I mporter
{

/ ∗ ∗
∗ @var ProductGateway
∗ /

private $productGateway ;

public function impor t (RemoteCata log $remoteCata log)
{

$products = $remoteCata log −>fe t ch () ;

foreach ($products as $product) {
$ th i s −>productGateway−>s to re ($product) ;

}
}

}

We haven’t seen the Guzzle and Doctrine code here again, instead we have written
code that is entirely written in our business domain and uses concepts from this
domain.

Lets move to the implementation of the RemoteCatalog starting with a test:
<?php

namespace Cata log \RemoteCata log ;

class Ht t pCata logTest extends \PHPUn i t _Framework_TestCase
{

public function t e s tGetAndParseData ()
{

$ c l i e n t = \Phake : : mock (’Ca ta log \Adapter \Ht t pCl i e n t ’) ;
$parser = \Phake : : mock (’Ca ta log \RemoteCata log \Parser ’) ;
$ u r l = ’ h t t p : / / remote . l oca l ’ ;

$productA = $ th is −>createSampleProduct () ;

c⃝ Qafoo GmbH 2010 - 2017

102 Chapter 4. Testing

\Phake : : when ($ c l i e n t)−>get ($ u r l)−>thenReturn (’ < xml > ’) ;
\Phake : : when ($parser)−>parse (’ < xml > ’)−>thenReturn (array ($productA)) ;

$cata log = new Ht t pCata log ($ur l , $ c l i e n t , $parser) ;
$data = $catalog−>fe t ch () ;

$ th i s −>asser tSame(array ($productA) , $data) ;
}

}

This test again perfectly clear explains how fetching a catalog with HTTP should
work on a technical level. Notice how we choose a very simple API for the HTTP
client, one that is fetching and $url and retrieving the body as string. We don’t need
more.
<?php
namespace Cata log \RemoteCata log ;

use Cata log \RemoteCata log ;

class Ht t pCata log implements RemoteCata log
{

private $ u r l ;
private $ c l i e n t ;
private $parser ;

public function f e t ch ()
{

$body = $ th is −> c l i e n t −>fe t ch ($ th i s −> u r l) ;
r e t u r n $ th is −>parser−>parse ($body) ;

}
}

The HttpClient is a real adapter for us now, we want this very simple API and we
are going to use Guzzle to implement it:
<?php
namespace Cata log \Adapter \Guzz le ;

use Guzzle \Ht t p \C l i e n t ;

class GuzzleHt t pC l i e n t implements Ht t pC l i e n t
{

private $ c l i e n t ;

public function __ cons t ruc t (C l i e n t $ c l i e n t)

c⃝ Qafoo GmbH 2010 - 2017

4.10 Outside-In Testing and the Adapter and Facade Patterns 103

{
$ th i s −> c l i e n t = $ c l i e n t ;

}

public function f e t ch ($ u r l)
{

$request = $ th is −> c l i e n t −>get ($ u r l) ;
$response = $request−>send () ;

r e t u r n $response−>getBody (t r ue) ;
}

}

Implementing the Guzzle client we have reached a "leaf" of our object graph. It
is important to see how only the Guzzle adapter actually uses Guzzle code. A
complete solution would also require to handle the Guzzle Exceptions, but that is
only a trivial task to introduce as well.

You can continue with this example and implement the Parser and the Product
Gateway objects. The technique stays the same: Think in terms of what you want
the API to look from the outside and invent collaborators that help you think about
the problem. Then implement them until you get to the "leafs" of the object graph.
Only the leafs should actually contain code to third party software.

Starting with new requirements of the system we will probably be able to reuse
some of the code: The HttpClient interface is very useful in a good number of use-
cases. The HttpCatalog can be used with specific Parser implementations to import
many different product catalogs that have an HTTP interface. And if your customer
uses some other protocols like FTP, BitTorrent or anything else then we are good
as well. The ProductGateway will probably be used in various places to give us
access to finding and storing products.

4.10.1 Conclusion
Specification and testing of the requirements from the outside requires you to think
about what you need first and not on what you have and how you might combine
this. This helps to design simple and reusable objects.

But outside-in testing has additional benefits: When you don’t test everything in
your system with unit-tests (which is not uncommon) for any of the various reasons
(time, prototyping, not core domain, ..) then you still have at least one acceptance

c⃝ Qafoo GmbH 2010 - 2017

104 Chapter 4. Testing

test that verifies the complete feature and maybe some unit-tests for the tricky im-
plementation details.

Overall we think making yourself familiar with outside-in testing is beneficial to
designing testable and maintainable applications.

c⃝ Qafoo GmbH 2010 - 2017

4.11 Behavior Driven Development 105

4.11 Behavior Driven Development

Tobias Schlitt at 8. March, 201352

While unit, integration and system tests - especially combined with the method-
ology of Test Driven Development (TDD) - are great ways to push the technical
correctness of an application forward, they miss out one important aspect: the cus-
tomer. None of these methods verify that developers actually implement what the
customer desires. Behavior Driven Development53 (BDD) can help to bridge this
gap.

The methodology of BDD is actually derived from TDD. Instead of writing a test
for a single code unit upfront, an acceptance test for a certain behavior is formulated.
More important, the test case is formulated in the ubiquitous language of the project,
allowing non-technical persons to read it as the specification of the desired feature.

In the following I want to outline the methodology of BDD from a developer’s
perspective.

4.11.1 Example
So much for theory. In practice I prefer to explain things on the basis of examples.
So here is an acceptance test:

Feature : The e x i s t i n g CFPs should be l i s t e d
As a v i s i t o r I want to get a l i s t i n g o f a l l e x i s t i n g CFPs .

Scenar io : I f there are no CFPs , I see an empty l i s t .
Given there are no CFPs
When I view "CFP L i s t i n g "
Then I see 0 CFPs l i s t e d

The snippet above shows an acceptance test formulated in a language that is based
upon the Gherkin framework for Domain Specific Languages (DSLs). The first lines
are narrative, documenting the feature to be tested. They do not fulfil any technical
purpose, think of it as if it was a class level doc block.

52https://qafoo.com/blog/036_behavior_driven_development.html
53https://en.wikipedia.org/wiki/Behavior-driven_development

c⃝ Qafoo GmbH 2010 - 2017

106 Chapter 4. Testing

What follows is the definition of a specific scenario within the feature. A scenario
is basically a user story, as you probably recognize it from your agile development
mode. Again, the introductory sentence is documentation and not processed.

The block following afterwards is the actual test case. These three sentences
are on the one hand human readable. On the other hand, they are structured
so simple and generic that they can be processed by a computer with very little
effort. The first word on every line is a keyword from the Gherkin language, while
Given indicates a precondition, the When part indicates the test stimulus and Then
formulates an expectation.

The wonderful thing about this specification is that your customer can actually
read and verify it. You can write down what you, as a developer, understood how
your customer wants the system to behave. You can send the specification to
her/him and ask her/him if this is exactly what she/he desires. If she/he agrees, you
can start implementing right away and verify your progress against the specification,
as it is executable through a BDD test tool.

Possibly, if you have a technically skilled customer and train him quite a bit, he
will probably even be able to adjust scenarios or even write some on his own.

4.11.2 Behat
The Gherkin example from above is almost useless without a proper tool to execute
it. Of course, there is no tool that can do it right away, because no software can
understand the project specific sentences. However, frameworks exist that offer
you a basis. For the PHP world, the toolkit of choice is called Behat54.

Behat provides you with the basic infrastructure for BDD and enables you to
easily work with custom sentences. Specifically, you create a so-called FeatureC
ontext for your test cases that contain a method for every sentence in your projects
ubiquitous language. For example:
class L i s t i n g FeatureContex t extends BehatContex t
{

/ / . . .

/ ∗ ∗
∗ @Given / ^ there are no CFPs$ /

54http://behat.org/

c⃝ Qafoo GmbH 2010 - 2017

4.11 Behavior Driven Development 107

∗ /
public function thereAreNoCfps ()
{

$ th i s −>cleanupDatabase () ;
}

}

The extract from the ListingFeatureContext above shows the method that reacts
to the sentence Given there are no CFPs. Using an annotation, Behat connects
the method to the sentence. Whenever it discovers that sentence in a test scenario,
it will execute the method.

4.11.3 Rationale
Of course, the examples shown above are only very rudimentary, missing e.g. vari-
ables and other advanced features. However, they should have explained what
BDD is all about: Communication. Especially in teams which follow the Domain
Driven Design (DDD) approach, a ubiquitous language for the project domain is
already practiced. Toolkits such as Behat provide you with the environment to ex-
press expectations in this language and make these executable.

The two essential ideas behind this are a) to ease communication with the client
and b) to bridge the gap between (important!) tests for technical correctness and
business expectations.

4.11.4 Conclusion
BDD is an interesting approach that can work especially well for projects that build
on extensive business logic and such that follow Domain Driven Design. Besides
that, Behat can become a tool of choice for acceptance tests also in respect to its
integration with Mink55 and Symfony256.

What are your experiences with BDD and with Behat?

55http://extensions.behat.org/mink/
56http://extensions.behat.org/symfony2/

c⃝ Qafoo GmbH 2010 - 2017

108 Chapter 4. Testing

4.12 Code Coverage with Behat

Manuel Pichler at 3. April, 201357

There is generally no point in having code coverage for Behat test cases be-
cause of their nature: The purpose of an acceptance test is to assert a certain
behavior of an application, not to technically test a piece of code. Therefore, there
is no point in checking for uncovered code pieces in order to write a Behat test for
it.

That said, there is still a scenario where you want to peek at code coverage of
Behat tests: When creating them as wide-coverage tests before starting to refactor
legacy code. Behat in combination with Mink provides you with a great tool for such
tests.

Before you can start with refactoring legacy code you need tests to ensure that
you don’t break working functionality. Web acceptance tests on basis of Behat and
Mink are a great tool to realize these. But how can you detect if the code you
are about to refactor is touched by at least one test? Code coverage can be of
assistance there.

4.12.1 Preparation
Since Behat does not ship with code coverage (for very good reason), you need
some hand work to get that done, but not much. In order to get started, you need
to install the PHP_CodeCoverage library58 and phpcov59, most probably via PEAR
using:
$ pear conf ig−set auto_ d iscover 1
$ pear i n s t a l l −a pear . phpuni t . de / phpcov

4.12.2 Collecting Code Coverage
Since the Behat tests stimulate your application through external calls, it is not
possible to generate code coverage right from the test code. Instead, you need to
trigger the code coverage collection from your application code:

57https://qafoo.com/blog/040_code_coverage_with_behat.html
58https://github.com/sebastianbergmann/php-code-coverage
59https://github.com/sebastianbergmann/phpcov

c⃝ Qafoo GmbH 2010 - 2017

4.12 Code Coverage with Behat 109

<?php

/ / . . . f o r b i d produc t ion access here . . .

$ca l cu la teCoverage = f i l e _ e x i s t s (" / tmp / generate−behat−coverage ") ;

i f ($ca l cu la teCoverage) {
requ i re ’PHP/CodeCoverage /Auto load . php ’ ;

$ f i l t e r = new PHP_CodeCoverage_F i l t e r () ;
$ f i l t e r −>addDi r e c t o r y ToB l a c k l i s t (__DIR__ . " / . . / vendor ") ;
$ f i l t e r −>addDi r e c t o r y ToWh i t e l i s t (__DIR__ . " / . . / s rc ") ;

$coverage = new PHP_CodeCoverage (n u l l , $ f i l t e r) ;
$coverage−> s t a r t (’Behat Test ’) ;

}

/ / . . . run your a p p l i c a t i o n here . . .

i f ($ca l cu la teCoverage) {
$coverage−>stop () ;

$ w r i t e r = new PHP_CodeCoverage_Repor t _PHP;
$wr i t e r −>process ($coverage , __DIR__ . " / . . / log / behat−coverage / " . microt ime (

t rue) . " . cov ") ;
}

At first the code detects if code coverage information should be gathered by check-
ing if the file /tmp/generate-behat-coverage exists. You can touch and delete that
one manually or from your test setup.

The next code block loads and initializes the code coverage collection, creates
a filter for 3rd party code and starts the code coverage collection. After that, the
comment indicates to run your application, which might e.g. be a Symfony2 kernel
handling call.

The final lines write the code coverage information into a file for further process-
ing. It will create a dedicated file for each request, where these files then need to
be merged later.

4.12.3 Running Tests
With the shown code in place, you can trigger a Behat test run with code coverage
using the following Ant code, for example:

c⃝ Qafoo GmbH 2010 - 2017

110 Chapter 4. Testing

< t a r g e t name=" behat−coverage " depends=" clean , i n i t i a l i z e ">
<de le te d i r ="$ {commons : l o g s d i r } / behat−coverage " / >
<mkdir d i r ="$ {commons : l o g s d i r } / behat−coverage " / >

<touch f i l e = " / tmp / generate−behat−coverage " / >
< a n t c a l l t a r g e t =" behat " / >
<de le te f i l e = " / tmp / generate−behat−coverage " / >

<exec executable =" phpcov " f a i l o n e r r o r =" f a l s e " d i r ="$ { based i r }" >
<arg value="−−merge " / >
<arg value="−−html " / >
<arg value ="$ {commons : l o g s d i r } / . . / coverage / behat " / >
<arg value ="$ {commons : l o g s d i r } / behat−coverage " / >

</exec>
</ ta rge t >

The Ant target first cleans up code coverage from previous runs. It then touches
the file that indicates to the application to run code coverage, executes Behat and
removes the trigger file again. Then the phpcov utility is executed to merge the
results of all requests into a single coverage report and generate HTML from it.

4.12.4 Conclusion
Code coverage is completely out of scope for acceptance tests. However, if you
abuse Behat to create wide-coverage tests before refactoring, it might be of help to
you to see what is still missing before you start hacking.

c⃝ Qafoo GmbH 2010 - 2017

4.13 Testing Micro Services 111

4.13 Testing Micro Services

Tobias Schlitt at 16. September, 201460

I recently had a short exchange with Ole Michaelis on Twitter about how to end-
to-end test micro services61. Since I didn’t have time to make my whole case, Ole
suggested that I blog about this, which I’m happily doing now.

The idea behind micro service architecture was discussed by Martin Fowler62

in a nice to read blog post, so I won’t jump on that topic in detail here.
At Qafoo we run a flavor of what would today be called a micro service architec-

ture for Bepado63. I sketched a simplified fraction of that below. While the frontend
is roughly a classical web application, the other shown components are modelled
as independently deployable, slim web services. The Product Updater service is re-
sponsible for fetching product updates from remote shops. It validates the incoming
data and queues the product for indexing. Indexing is then performed in a different
service, the Product Catalog.

Authentication Product Catalog

Shop Frontend

Product UpdaterExternal Shop

Queue

60https://qafoo.com/blog/071_testing_micro_services.html
61https://twitter.com/CodeStars/status/501336599419187200
62http://martinfowler.com/articles/microservices.html
63http://bepado.com

c⃝ Qafoo GmbH 2010 - 2017

112 Chapter 4. Testing

While this shows only a small part of the full architecture, typical problems with
system-testing such environments become evident. Sure, you can unit test classes
inside each micro service and apply classical system tests to each service in iso-
lation. But, how would you perform end-to-end system tests for the full application
stack?

Trying to apply the classical process of "arrange, act, assert" did not work be-
cause of two reasons: a) there is a good portion of asynchronity (queuing) between
services which prevents from reasoning about the point in time when a certain state
of the system can be asserted. b) setting up the fixture for the full system to trigger
a certain business behavior in isolation would be quite complex task.

A fix for a) could be to mock out the queues and have synchronous implemen-
tations for the test setup. Still, the accumulated service communication overhead
(HTTP) makes timing hard. Again, you could mock out the service layer and replace
it with something that avoids API roundtrips for testing. But this would mean that
you need to maintain two more implementations of critical infrastructure for testing
purposes only and it would make your system test rather unreliable, because you
moved a large bit away from the production setup.

A similar argument applies to topic b): Maintaining multiple huge fixtures for
different test scenarios through a stack of independent components is a big effort.
Micro fixtures for each service easily become inconsistent.

For these reasons, we moved away from the classical testing approach for our
end-to-end tests and instead focused on metrics.

The system already collects metrics from each service for production monitor-
ing. These metrics include statistical information like "number of updates received
per shop", various failover scenarios e.g. "an update received from a shop was in-
valid, but could be corrected to maintain a consistent system state", errors, thrown
exceptions and more. For system testing we actually added some more metrics
which turned out to be viable in production, too.

In order to perform a system test, we install all micro services into a single VM.
This allows the developer to easily watch logs and metrics in a central place. A very
simple base fixture is deployed that includes some test-users. In addition to that,
we maintain very few small components that emulate external systems with entry
points to our application. These "emulation daemons" feed the system with ran-

c⃝ Qafoo GmbH 2010 - 2017

4.13 Testing Micro Services 113

domized but production-like data and actions. One example is the shop emulator,
which provides product updates (valid and invalid ones) for multiple shops.

As a developer I can now test if the whole application stack still works in normal
parameters by monitoring this system and asserting the plausibility of metrics. This
helps us to ensure that larger changes, and especially refactorings across service
borders, do not destroy the core business processes of the system.

While this is of course not a completely automated test methodology, it serves
us quite well in combination with unit and acceptance tests on the service level:
The amount of time spent for executing the tests is acceptable, while the effort for
maintaining the test infrastructure is low.

What are your experiences with testing micro service architectures? Do you
have some interesting approaches to share? Please feel invited to leave a com-
ment!

P.S. I still wonder if it would be possible to raise the degree of automation further,
for example by applying statistical outlier detection to the metrics in comparison to
earlier runs. But as long as the current process works fine for us, I’d most probably
not invest much time into research in this direction.

c⃝ Qafoo GmbH 2010 - 2017

114 Chapter 4. Testing

4.14 Five Tips to Improve Your Unit Testing

Tobias Schlitt at 13. June, 201764

After you got the hang of unit testing there is still so much space for improve-
ment. In this post I want to share five tips with advanced testers I have seen to
influence testing in the right direction.

Do you have additional tips and tricks to improve testing? Please leave a com-
ment!

4.14.1 1. Be Pragmatic About a "Unit"
"A unit is a class" or even "a unit is a single method" are two dogmata people use to
explain unit testing. This for good reasons: Following a straight line helps to grasp
the concept when getting started, recognizing the code smells discovered through
testing issues on that basis is very important and aiming for coherent classes and
pure methods/functions is always a good idea.

But as you have practiced unit testing on basis of these dogmas you will notice
that in some cases pragmatism beats the dogma. That is perfectly valid. There can
be many reasons to test a bunch of classes together instead of focussing on just a
single one:
• A class uses multiple rather trivial other classes where it is pure overhead of

mocking these (e.g. DTOs with very few logic).
• You are in the phase of refactoring and don’t know if the result turns out ex-

actly to be what you want.
• A class dispatches logic to some other classes to make the code re-usable

but the logic is only complete in combination.
• The individual classes are rather simple, but them playing together results in

an algorithm that’s worth testing.
• ...

But beware: Never use an external system (e.g. database, hard disk, web-service)
in a unit test.

64https://qafoo.com/blog/105_five_tips_improve_unit_testing.html

c⃝ Qafoo GmbH 2010 - 2017

4.14 Five Tips to Improve Your Unit Testing 115

4.14.2 2. Test Where the Logic is
I’m not a fan of CodeCoverage. But when you just get started with unit testing it is
a great tool to reflect your tests and, even more important, the parts of your code
which are not touched by tests. But following Code Coverage after this initial learn-
ing phase often drives people into testing trivials like getters/setters, constructors
and so on.

Please do not test these trivials explicitely. It’s a nice practice for your first few
unit tests, sure. And cases might where you feel the need to test a setter (e.g. if it
contains rather complex validation). In all other cases: Trust yourself that you will
use the trivial code in other test cases, for examle such from tip 1 or 5.

Instead of focussing on trivials, look where there really is logic. In technical
terms: Where are the loops, conditions, private methods and so on? Focus on
these places. Accept the challenges they offer and write tests for stuff that matters.

4.14.3 3. Continuously Refactor Test Code
As your system grows your test code will (hopefully) grow, too. Some people insist
that changing tests is a no-go because there no guarantee to not break a test. I
disagree: As within your production code you will find better arrangement for your
code and will get a deeper understanding on how to realize certain requirements
over time. You will produce duplication and (hopefully!) become aware of it. You
will implement hacks to achieve results fast and clean them up when you find better
solutions over time.

It is important to reflect over your test code in a very similar way than you do it
with the productive code. However, there are two important hints to follow:

a) Never change production and test code at the same time. When you refactor
your test code, the production code is the reference to asserts tests are still working
as they should. And of course your tests are the assertion while working on your
production code.

b) Keep test code simple. Simple does not mean dirty, it means easy to read
and understand. Your goal should neither be to reduce the ammount of test code
to a bare minimum nor to find the highest degree of automation. Tip number 4 will
go a little bit more into detail here.

c⃝ Qafoo GmbH 2010 - 2017

116 Chapter 4. Testing

4.14.4 4. Build Your Own Set of Utilities
PHPUnit (and other unit test frameworks) ship with a large set of generic tools and
utilities. Ranging from assertions over data generators to mock frameworks - you
have a large selection inside of frameworks and extensions to download. While
these can give you a good technical basis for your tests, none of them provides the
golden hammer to suite all your needs.

You will start writing utility methods for setting up certain fixtures (e.g. a User,
a Product) and implement custom assertions (e.g. assertUniqueProductSet())
based on your data structures and code patterns. That is a good thing! Identify the
patterns that evolve in your test suite and reduce duplication by extracting utilities.

Tool methods can typically reside in common base classes (due to PHPUnits
inheritance scheme) or traits (See: Using Traits With PHPUnit).

4.14.5 5. Always Write Tests for Bugs
You can discuss a lot about worthwhile tests and opinions on this topic vary widely.
But there is one category that always makes sense: Regression tests for bugs.
Whenever you encounter a bug in your software, write a test that fails due to this
bug and fix the bug afterwards.

If someone discovers a bug in your software that means that the code is actually
in use, so it’s important for your users and therefore deserves a test. The pure
existence of the bug shows that there is room for another test. And, you will need
to reproduce the bug anyway. Doing this by hand is the same effort that doing it
through a test case. So the latter version will safe you time and gain you a test
where there would have been only a bug fix before.

c⃝ Qafoo GmbH 2010 - 2017

5. Refactoring

5.1 Loving Legacy Code

Tobias Schlitt at 4. April, 20171

Many developers want to "rewrite the whole application" and "get rid of all that
sh*t". Most of them are pretty blank when I tell them that I really like working on
such code bases, even if I just jumped into the code. I recently talked about that to
the other Qafoo members and all of them agreed to my views. Therefore I want to
explain our love of legacy code in this post.

The first thing to realize about existing code bases - no matter how bad you
feel their quality is - is that it provides business value. The code is in production
and people use it and gain value from that. For us as developers that means: The
business rules that the appplication is meant to reflect are already written down
in code. There is no need to discuss the purpose, how things are meant to work
and which goals should be achieved. We already have a machine readable version
of the business vision and it works. One of the biggest issues in software develop-
ment has already been taken from our shoulders: Understanding the business and
implementing a solution accordingly.

When implementing a new program on the green field you have a high amount
of uncertainty about the eventual goals. Extracting and documenting requirements
is a tough part for all stakeholders and many iterations need to happen before

1https://qafoo.com/blog/100_loving_legacy_code.html

c⃝ Qafoo GmbH 2010 - 2017

118 Chapter 5. Refactoring

we even reach the stage where software is usable and production ready. Which
applications that have grown throughout years these steps have already been done.
As developers we can read the eventual decisions how the software should work: It
is already there, written down in a language we can naturally understand: Code!

Even better we also know what are common change and extension points and
use the technical patterns which are optimal for the change we saw in a couple
of years. Developers are often wrong when anticipating change, but in this case
we can analyze the past development and have data to base on when anticipating
change.

Now we "only" need to move around the code so that its functionality does not
change but that we can better maintain it and get rid of technical dept. Of course
this is not a picnic, too. But instead of tackling on an additional layer of complexity
we can focus on refactoring. If we created a good refactoring basis already, we
can even perform that task on the go beside implementing new features and fixing
bugs.

I could even go that far to tell you that implementing software on the green field is
rather boring for me. Of course there are always smaller parts which are interesting
and challenging but most tasks are just boring. It’s different with unknown legacy
code bases. You need to be creative to apply at least a minimal amount of testing
before you can start to refactor. You need to follow the minds of multiple developers
of which some even might not be in sight anymore. You need to understand what
patterns are realized in a software, what would improve the code quality and find
ways to reach that goal without disturbing every day work. This is the interesting
stuff. :)

In legacy software you can let technical patterns emerge for a proven
domain.

-- Tobias Schlitt

You can read more about refactoring approaches which can help you in our posts on
Extract Methods (See: Basic Refactoring Techniques: Extract Method) and Extract
Services (See: How to Perform Extract Service Refactoring When You Don’t Have
Tests).

c⃝ Qafoo GmbH 2010 - 2017

5.2 Refactoring with the Advanced Boy Scout Rule 119

5.2 Refactoring with the Advanced Boy Scout Rule

Tobias Schlitt at 30. May, 20172

When we join teams to coach them with refactoring their legacy code base,
many of them are overwhelmed by the sheer mass of code. That typically results
in the request for "some refactoring sprints" or even "a complete rewrite". Both is
obviously not a solution from the business perspective - feature development and
bug fixing needs to go on and the refactoring should not eat up the larges portion of
time. But where and how should the team start and how should? What we call the
"Advanced Boy Scout Rule" has helped many teams to come over this staleness
and reach fast results while continuing to deliver business value.

The Boy Scout Rule says

Always leave the camping ground cleaner than you found it.

Or translated to software development

Always leave the code cleaner than you found it.

This mantra is hopefully part of your team philosophy latest since every member
read "Clean Code". (If not: Book a training with us, now!3)

Building on this idea we apply the "Advanced Boyscout Rule" as follows:
1. When you feel pain while working on a specific code piece, stash your changes

and try to resolve the pain through refactoring right now.
2. If you managed to fix it, commit and resume your original work.
3. If you did not manage to resolve the issue within $x (maybe 15-20) minutes:

• Revert the refactoring attempt
• Add a @refactor annotation describing shortly what your issue is
• If there already is a @refactor annotation, append a ! to it

4. After 1-2 sprints, grep your code for @refactor and sort the output by the
number of ! descending.

5. Pick the highest priority issue(s), define a solution strategy and add regular
tickets to execute the refactoring in the upcoming sprint.

2https://qafoo.com/blog/104_refactoring_advanced_boysout_rule.html
3https://qafoo.com/services/workshops/refactoring

c⃝ Qafoo GmbH 2010 - 2017

120 Chapter 5. Refactoring

This procedure yields you several benefits, like:
• Code becomes better and better in small steps every day
• You reach the most hurting pains first, improving every day development fast
• Immediate visible business value from your development is not lowered sig-

nificantly
• Instead, you even gain business value by stabilizing the parts of your software

first which are touched most
Of course this is only a draft for the concrete implementation in your team. You
should change this accordingto your needs. For example instead of leaving com-
ments in the code, some teams prefer to add a post it with the class name to a wall
in the office and add dots on their back if there is already one. For other teams
it makes sense to focus on specific aspects first like "extract SQL statements into
gateways/repositories" or "migrate from arrays to data transfer objects".

I’d like to thank Michael Marlberg4 who made me aware of this method5 at first
in a project we worked on together.

4https://twitter.com/mmahlberg
5http://aim42.github.io/#Introduce-Boy-Scout-Rule

c⃝ Qafoo GmbH 2010 - 2017

5.3 Extended Definition Of Done 121

5.3 Extended Definition Of Done

Kore Nordmann at 21. February, 20176

When software projects grow it is considered helpful if the software follows an
established structure so that every developer finds their way easily. If the used
structures and patterns change per developer or even every couple of months or
years it will get really hard to maintain the software. There are multiple reasons for
this:
• Collective Code Ownership

Every developer in a team should have the feeling that the code is "their" code.
Otherwise they will defer responsibility for features or bug fixes to somebody
else. This is not helpful especially when somebody leaves the company or
even just is sick or on vacation.

• Common principles ease understanding
If the code follows common structures it is a lot easier to get to the business /
domain logic and find issues there. Otherwise you first need to understand the
structures of the code before you can even start thinking about the business /
domain logic.

• Focus on what matters
In the end our code is there to solve certain business / domain problems
and not be creative about the patterns used. If you, as a developer, know
immediately which patterns you are supposed to use you can focus much
more easily on the business / domain concepts. Otherwise many developers
will often try to come up with fancy abstraction layers distracting from the
actual business / domain logic.

This may sound boring for developers but in our experience with many different
teams developers welcome the possibility to focus on the business / domain part.
They welcome not having to discuss the "correct" patterns again and again.

To get the acceptance for this it is crucial to do a workshop together with the
whole development team and agree on the patterns to use with everybody involved
with the code. We moderate workshops like this regularly and always find a sensible
set of patterns to agree on. Guided by our expertise the already existing patterns

6https://qafoo.com/blog/097_extended_definition_of_done.html

c⃝ Qafoo GmbH 2010 - 2017

122 Chapter 5. Refactoring

and the patterns the developers themself think are the right ones to use will be
discovered and agreed on.

In such workshops we mutually agree on set of definitions and define them as a
guide for code reviews which are then part of the "Definition Of Done" for the team.
This also means that the team gets clear guidelines for Code Reviews and the
reviewer knows what to look for. With several teams we even assist during Code
Reviews for some time by reviewing the pull requests ourselves according to the
guidelines we agreed on. This helps to get a deeper understanding of the structure
and patterns and resolves remaining issues.

A common Definition Of Done we agree on could look like the following points.
Remember that this might vary a lot depending on the domain, the team and the
already existing patterns:
• Always exceptions for error handling

– Never return null or false in case of an error
• Use data objects

– Never use arrays as data structures
– Data objects must not aggregate "active" dependencies (gateways, ser-

vices)
– Only logic modelling eternal truth

• Services
– Max 4 dependencies, which are all injected using Constructor Injection
– No dependencies on externals – each external class should be wrapped

behind a facade
– Must be "fully" tested

• Use Gateways / Repositories to load and save data
– Return and / or receive data objects
– Services depend on Gateways (interfaces)

• No logic in Controller, besides
– Catch domain exceptions
– Simple authorization ("is logged in")
– Convert incoming data into object and outgoing data from object

There are usually more rules then this simple set which are then more specific to
the given domain. But most of these rules are simple and fast to review (not simple

c⃝ Qafoo GmbH 2010 - 2017

5.3 Extended Definition Of Done 123

enough to write automatic checks, though) and following such a defined set of rules
already greatly simplifies and unifies the code.

5.3.1 Conclusion
While working with many different teams we understood that common rules for code
structure and patterns on top of what PSR-2 defines are helpful for developers and
speed up the development. Strong rules simplify code reviews and strengthen the
sense of Collective Code Ownership. We suggest to build up a rule set for common
problems in your domain and use them in your daily work. Get the whole team
together and agree on a rule set with everyone.

c⃝ Qafoo GmbH 2010 - 2017

124 Chapter 5. Refactoring

5.4 How to Refactor Without Breaking Things

Tobias Schlitt at 1. June, 20167

Refactoring means to change the structure of your code without changing its
behavior. It is an essential part of everyday programming and should become knee-
jerk for your whole development team. Refactoring is very helpful to cleanup feature
spikes, revise earlier decisions and keep a maintainable codebase in the long run.
In a perfect project world - with extensive automated tests of various types - this
is just a matter of getting used to. But there are only very few such projects. So
getting into proper refactoring is much harder. This article will show you important
tips to master this challenge with your team.

From our experience in various (legacy) projects successful refactoring depends
on the following points:

1. Tests
2. Baby steps

5.4.1 Tests
Tests help you to ensure that the behavior of your application does not break while
restructuring the code. But in many cases you will want to apply techniques of
refactoring just to make your code more testable and to come to a stage where
writing unit tests gets cheap. There the dog seems to chase its own tail.

We found out that high-level functional tests can deal as a good basis to get
started with refactoring. Even very old legacy applications can usually be tested
through the browser using Mink with PHPUnit (See: Using Mink in PHPUnit) (or
Mink with Behat). Which of both solutions you choose depends on your project
team: If you are familiar with PHPUnit and don’t plan of involving non-technical
people in testing later, PHPUnit + Mink is a solid choice for you.

Before you start writing tests you need to setup at least a rudimentary automa-
tion system that can reset your development installation (most likely the database).
The goal must not be to get a fully fledged infrastructure automation (See: Why you
need infrastructure and deployment automation) (which is of course still desirable)
but to get a predictable, reproducible starting state for your tests. Maybe you just

7https://qafoo.com/blog/085_how_to_refactor_without_breaking.html

c⃝ Qafoo GmbH 2010 - 2017

5.4 How to Refactor Without Breaking Things 125

hack up a shell script or use PHPUnits setupBeforeClass() to apply a big bunch
of SQL.

Then you start writing tests through the front-end for the parts of your code that
you want to touch first, e.g. a really bad controller action (which code to refactor
first will be part of another article).

Make sure to concentrate on the essentials: Keep the current behavior working.
Don’t care too much about good test code. You can throw these tests away after
you finished your refactoring or just keep a few of them and clean them up later. As
usual this is a matter of trade-off (See: Developers Life is a Trade-Off). What you
want to achieve here is an automated version of the click-and-play tests you’d do
manually in the browser to verify things still work.

Code coverage can be of good help here to see if you have already enough tests
to be safe. We have a blog post on using code coverage with Behat (See: Code
Coverage with Behat) for exactly this purpose. The same technique can be applied
to running PHPUnit with Mink. But beware: the goal is not $someHighPercent code
coverage! The goal is to give you a good feeling for working with the underlying
code. Once you have reached that state, stop writing tests and focus on the actual
refactoring again.

5.4.2 Baby Steps
When you start with restructuring your code, do yourself a favor and don’t be too
ambitious. The smaller your steps are, the easier it gets. Ideally, you will only apply
a single refactoring step (e.g. extract method or even rename variable) at once,
then run your tests and commit.

We know that this is hard to get through in the first place, especially when you
did not do much refactoring before. But reminding yourself over and over again to
go very small steps into a better direction is really helpful for multiple reasons:

1. It reduces the risk of breaking something. The human brain can only cope
with a limited amount of complexity. The larger the change is, the more things
you need to keep in mind. This raises the chance of messing things up and
waist time.

2. If you messed up the current step (for example by changing behavior or re-
alizing that your change did not lead to a good result) large changes make

c⃝ Qafoo GmbH 2010 - 2017

126 Chapter 5. Refactoring

it harder for you to just reset and restart. You will think about the time you
already invested and will probably go on trying to fix the state. However, this
typically makes it worse. Reset to HEAD and restart the refactoring step
should be the way to go instead.

3. While you might have a big picture in mind where your refactoring should lead,
this might not be the best goal. Maybe there are better solutions you did not
think about in the first place. Doing baby steps will keep the door open for
correcting your path at any time.

4. Chances that you will get through a large refactoring without being disturbed
are low. There is always an emergency fix to be applied, a very important
meeting to be joined, good coffee to be drunken or just Facebook that will
require you to stop. Getting back into your working stack later will be hard
and committing a non-working state should be a no-go. With baby steps, you
can just cancel the current step or finish it within seconds and leave safely.

Long story short: Do yourself the favor and get used to baby steps. This will some-
times even result in more ugly intermediate steps. Get over it, things will eventually
be better!

As a side note: People often ask us, if committing each and every baby step
won’t lead to polluting your version history. If you feel that way, rather go for squash-
ing your commits later than doing larger steps with each commit.

What are your tips for successful refactoring? Leave us a comment!
The current issue of the German PHP Magazin8 also has a slightly more exten-

sive article on this topic by us.

8https://qa.fo/book-php-magazin-4-16-244272

c⃝ Qafoo GmbH 2010 - 2017

5.5 Getting Rid of static 127

5.5 Getting Rid of static

Kore Nordmann at 10. January, 20179

When people start (unit-)testing their code one of the worst problems to tackle
are static calls. How can we refactor static calls out of an existing application without
breaking the code and while producing new features? How can we get rid of this
big test impediment?

5.5.1 The Problem
Illustrating the problem with example code is only partially possible – the sheer
amount of static calls found in real-world software is way too large. The problem is
worse by at least a magnitude from everything you’ll see in this blog post. But here
goes an example anyways:
class UserServ i ce {

/ ∗ . . . ∗ /

public s t a t i c function getUser ($user I d) {
$cacheKey = ’ user − ’ . $user I d ;
i f (Cache : : has ($cacheKey)) {

r e t u r n Cache : : get ($cacheKey) ;
}

$userData = DB : : query (’SELECT ∗ FROM user WHERE i d = : id ’ , [’ id ’ => $user I
d]) ;

$user = new User ($userData) ;

Cache : : se t ($cacheKey , $user) ;
r e t u r n $user ;

}

/ ∗ . . . ∗ /
}

Using the cache statically is only one common thing to do. Usually it is also the
logger, the database and about any service. Probably it is even the UserService
itself with calls like UserService::getUser(42) spread all over your code.

Today it is an established best-practice that we should test our code. People
working with code like the one shown above know this and want to apply automated

9https://qafoo.com/blog/094_getting_rid_of_static.html

c⃝ Qafoo GmbH 2010 - 2017

128 Chapter 5. Refactoring

testing. It is also clear that the most desired testing method are unit tests. When
writing new methods in the UserService: How can we test those? Or how can we
test the existing methods in the UserService?

The core problem when testing the UserService is that we cannot mock the
Cache instance for testing. The original Cache class will always be called, thus we
will always test the Cache class together with the UserService. This is, by definition,
not an Unit Test any more. Depending on the used cache implementation this might
also require a far more complex setup to run the tests. If the cache implementation
directly caches into Redis for example, you need a working Redis server just to run
the UserService tests.

But getting away from static calls isn’t a thing you should do in a single refactor-
ing step. In fact, migration must be smooth and longer running to align with business
perspectives. To achieve this, we show you multiple steps in such a migration.

5.5.2 Step 1: Replaceable Singletons
The workaround for the primary testing problem is obvious and employed by many
developers – you can even find complete testing frameworks build on this approach,
like the one from Laravel10: Make the implementation behind the static calls replace-
able. Laravel calls this "Facade", while the Facade Pattern11 actually is something
different.

The idea is that the Cache class gets a setter for its actually used cache imple-
mentation, like:
class Cache {

private s t a t i c $implementat ion ;

public s t a t i c function set I mplementation (Cache I mplementation $cache) {
s e l f : : $ implementat ion = $cache ;

}

/ ∗ . . . ∗ /
}

In your test case you can now use something like this:

10https://laravel.com/docs/5.3/mocking#mail-fakes
11https://en.wikipedia.org/wiki/Facade_pattern

c⃝ Qafoo GmbH 2010 - 2017

5.5 Getting Rid of static 129

class UserServ i ceTest extends \PHPUn i t _Framework_TestCase {
public function t e s t LoadUser () {

/ / Could happen i n setUp ()
$ o r i g i n a lCache = Cache : : get I mplementation () ;

/ ∗ Set up mock ∗ /

Cache : : se t I mplementation ($cacheMock) ;

/ ∗ Ac t u a l t e s t setup ∗ /
/ ∗ St imu lus ∗ /
/ ∗ As s e r t i o n ∗ /

/ / Reset should happen i n tea rDown ()
Cache : : se t I mplementation ($ o r i g i n a lCache) ;

}
}

Why is this still problematic?
1. Global side effects

The worst thing here is the global side effect of this change. Since $implementation
has to be a static variable in the Cache class it is also changed for any other
code, like future tests. To get atomicity of your tests you must also reset the
cache implementation after the test again.

2. More complex test setup
If you would use dependency injection the test code would only consist of the
commented out code and would not require the setting and re-setting of the
cache implementation. This might look trivial in this code but there are usually
more classes used.
Also tests should focus on readable code even more then any other code
since they are often the starting point to understanding code for other devel-
opers. Anything messing unnecessarily with the test code can be considered
bad.

3. API differences due to indirection
The APIs of the Cache class and the CacheImplementation class might be
different which means that you have to mock the internal usage inside of the
Cache class and not the usage inside of the UserService class. You must at
least ensure that those APIs are the same. This means that your brain must

c⃝ Qafoo GmbH 2010 - 2017

130 Chapter 5. Refactoring

keep more context which leaves less focus on the actual implementation and
test.

This is a valid workaround introducing additional complexity because of global state
and unnecessary indirection. The static calls allow you to skip dependency injection
by introducing additional complexity while understanding the code and while testing
the code. A trade-off I am not willing to accept as a migration step but not in the
long run.

5.5.3 Step 2: Service Locator
Looking at the actual target of our refactorings, the UserService we desire looks
like this:
class UserServ i ce {

private $cache ;
private $database ;

public f u n t i o n __ cons t ruc t (Cache I mplementation $cache , Database $database) {
$ th i s −>cache = $cache ;
$ th i s −>database = $database ;

}

/ ∗ . . . ∗ /

public function getUser ($user I d) {
$cacheKey = ’ user − ’ . $user I d ;
i f ($ th i s −>cache−>has ($cacheKey)) {

r e t u r n $ th is −>cache−>get ($cacheKey) ;
}

$userData = $ th is −>database−>query (’SELECT ∗ FROM user WHERE i d = : id ’ , [’
id ’ => $user I d]) ;

$user = new User ($userData) ;

$ th i s −>cache−>set ($cacheKey , $user) ;
r e t u r n $user ;

}

/ ∗ . . . ∗ /
}

c⃝ Qafoo GmbH 2010 - 2017

5.5 Getting Rid of static 131

What changed? We migrated all static dependencies to dependency injection via
Constructor Injection and removed the static keyword for the getUser() method
(and all others).

This code is testable. We can inject mocks for the CacheImplementation and D
atabase directly and will not have any global side effects affecting out test atomicity.
There is no environment related test setup required any more. The method itself
could be cleaner and easier to test, but this is not the point right now. One important
remark: You can also call every static method dynamically. Thus we can just
pass an instance of Cache or CacheImplementation and Database and there should
not be any problems.

The problem is that the API of our UserService changed. If we had code earlier
calling UserService::getUser(42) it will not work any more. A simple step to get
this code working is introducing a static Service Locator as a workaround during
refactoring:
class Serv i ce Locator {

private s t a t i c $userServ i ce = n u l l ;

/ ∗ Same f o r cache () , database () , . . . ∗ /

public s t a t i c function userServ i ce () {
i f (! s e l f : : $userSe rv i ce) {

s e l f : : $userSe rv i ce = new UserServ i ce (s e l f : : cache () , s e l f : : database ()) ;
}

r e t u r n s e l f : : $userSe rv i ce ;
}

}

The we need to migrate all calling code to call ServiceLocator::userService()
->getUser(42) instead of UserService::getUser(42). This refactoring is easy
enough and can usually be done by Search & Replace: s/UserService::/Service
Locator::userService()->/g

The code using the UserService is still not clean, but we cleaned up the User
Service itself to use dependency injection and be testable. We are not done yet,
but this already is a big step forward.

Until now all steps are quick to accomplish, but the next one will take time.

c⃝ Qafoo GmbH 2010 - 2017

132 Chapter 5. Refactoring

5.5.4 Step 3: Dependency Injection
Now we have the UserService in the desired state. We already changed the code
using it to indirect static calls through the ServiceLocator. But we should eventu-
ally get rid of all the static access, including the static access to the ServiceLocator
itself.

Problems with using a Service Locator are:
1. Still global side effects (when used statically)

If you test a class which itself accesses the Service Locator you have to re-
place all requested services with mock objects in the Service Locator. Since
the Service Locator implementation uses static state it will still affect all future
tests (without proper resetting logic). This breaks test atomicity again.

2. ..., thus also: Complex test setup
3. Hidden dependencies

If a class has access to the Service Locator you can only understand its de-
pendencies from reading its entire code. In a class using Constructor Injec-
tion we know all its (required) dependencies by just looking at the constructor
signature.
A class which has access to the Service Locator can request any class any-
where in its code from it. How do we know what to mock in a test case or
what setup to create if we want to use the class somewhere else? You’ll have
to read the entire code.
This is also true for Service Locators with dynamic access which are passed
around. They can be another intermediate refactoring step but usually pro-
vides nothing of additional value.

Consequence: Pass the UserService instance to every class which needs ac-
cess to it. Or phrased differently: Use Dependency Injection for all your code – or
at least all code which is supposed to be tested or re-used at some point.

This means that, in production, you’ll have just one instance of the UserService
which is passed to any class which needs to access the users. This seems like a
lot of work and it really is. But most of the work can actually be taken over by even
the simplest Dependency Injection Container:
class Dependency I n j e c t i o nCon ta ine r {

private $userServ i ce = n u l l ;

c⃝ Qafoo GmbH 2010 - 2017

5.5 Getting Rid of static 133

/ ∗ Same f o r cache () , database () , . . . ∗ /

public function userServ i ce ($d ic) {
i f (! $ th i s −>userServ i ce) {

$ th i s −>userServ i ce = new UserServ i ce ($ th i s −>cache () , $ th i s −>database ()
) ;

}

r e t u r n $ th is −>userServ i ce ;
}

public function userCo n t r o l l e r ($d ic) {
r e t u r n new UserCo n t r o l l e r ($ th i s −>userServ i ce ()) ;

}
}

OK, this looks really similar to the ServiceLocator class shown before – only drop-
ping all static. This is right. The difference between a Service Locator and a
Dependency Injection Container is not the implementation but the usage:

The DependencyInjectionContainer is only used inside your index.php and
not passed to any class. As an additional migration step you may use it inside your
Service Locator until we migrated away from it entirely.

If you have a simple routing definition like with Silex12 you should use the De-
pendency Injection Container right there – and nowhere else:
$app = new S i l e x \Ap p l i c a t i o n () ;
$d ic = new Dependency I n j e c t i o nCon ta ine r () ;

$app−>get (’ / user / { i d } ’ , function ($ id) use ($app , $d ic) {
r e t u r n $dic−>userCo n t r o l l e r ()−>getAc t i o n ($ id) ;

}) ;

$app−>run () ;

The Dependency Injection Container will now resolve all the required dependencies
only when the route is called. You can even replace the code above by using
simple Dependency Injection Containers like Pimple13.

This is the last step to have only testable classes all using Dependency Injection.
The last step is a lot of work because many classes must be adapted. But you
achieved actually two goals by doing this:

12http://silex.sensiolabs.org/
13http://pimple.sensiolabs.org/

c⃝ Qafoo GmbH 2010 - 2017

134 Chapter 5. Refactoring

1. Make everything testable
2. Extract application configuration

Which cache is used by the user service should not be the concern of the
user service itself but is nothing but application configuration. Now the D
ependencyInjectionContainer contains all your application configuration (it
may access parameter files or similar) and you configure the used cache
implementation there – and it will be "magically" used everywhere.

5.5.5 Conclusion
Migrating away from static calls can be quite some work. This blog post showed
you a migration strategy with functional software in every step. Consider static
a code smell because of all the reasons mentioned in this post and migrate away
from it eventually. Take your time.

c⃝ Qafoo GmbH 2010 - 2017

5.6 Refactoring Should not Only be a Ticket 135

5.6 Refactoring Should not Only be a Ticket

Tobias Schlitt at 24. January, 201714

A while ago I tweeted

#Refactoring should never only be a dedicated task on your board. It
should be an essential part of every other task you work on.

-- https://twitter.com/tobySen/status/783610875047505920

In this blog post I would like to elaborate a bit further on what I mean and why I
think this is important.

When we do quality workshops and trainings on-site at our customers we see
various approaches to refactoring which typically fail, for example:

1. A general ticket "Refactoring" is added to every sprint
2. Dedicated refactoring sprints are requested

The problem here is that refactoring is not seen as an essential part of the daily
work, but instead as a dedicated task that requires additional time on top of daily
work.

Compare your work as a programmer to the job of any type of craftsman: does
that craftsman charge additional time for cleaning up the construction site? Of
course not. Either you clean up your working place after finishing a task or you
need to do it before starting the next. Both ways are possible, but just skipping to
clean your workplace until you get dedicated time is not an option.

This is exactly the way how you should approach refactoring: When starting a
new task you need to analyze the existing code anyway. If you stumble over some
dirt, clean it up as you go. When you finished your task reflect what you just did.
Maybe a method grew too large? Maybe you could avoid duplication? Maybe you
chose a bad name? Fix it – now!

If your team accepts refactoring as an essential part of every work they perform,
you will experience how fast your code base will improve at exactly the places you
work on a lot.

Of course you will still discover bigger challenges while trying to clean up the
construction site. There will be steps which turn out to be too large to be done on

14https://qafoo.com/blog/095_refactoring_should_not_be_a_ticket.html

c⃝ Qafoo GmbH 2010 - 2017

https://twitter.com/tobySen/status/783610875047505920

136 Chapter 5. Refactoring

the go. These are exactly the parts which should be made dedicated tickets. But
beware to just name a ticket "Refactoring". Be specific instead and explain exactly
what needs to be achieved to put the team in a better position to clean up on the
go.

c⃝ Qafoo GmbH 2010 - 2017

5.7 Extracting Data Objects 137

5.7 Extracting Data Objects

Tobias Schlitt at 7. February, 201715

Extracting data objects from your code will make it easier to read and write,
easier to test and more forward compatible. This post shows you the two most
common cases where introducing a data object makes sense and how to do it.

5.7.1 Too Many Parameters
Every project has them, the method signatures where you just add another param-
eter. Query methods are a very typical example:
public function f i n dProducts ($phrase , $categor ies = array () , $minPr i c e = 0 ,

$maxPr i c e = n u l l , $productTypeF i l t e r s = array () , $ l i m i t = 10 , $ o f f s e t = 0)
{

/ / . . .
}

There are several issues with such method signatures: It is really hard to remember
which parameter is at which position, additional information will require you to add
even more parameters and introducing more mandatory data will even force you to
change the parameter order which will most probably be a large amount of work.

Inspecting the parameters closely you can find a common pattern for most of
them: 5 of 7 parameters are criteria for product search. This already reveals the
name for the data object to choose:
class ProductC r i t e r i a
{

public $phrase ;

public $categor ies = array () ;

public $minPr i c e = 0;

public $maxPr i c e ;

public $productTypeF i l t e r s = array () ;

public function __ cons t ruc t ($phrase)
{

$ th i s −>phrase = $phrase ;

15https://qafoo.com/blog/096_refactoring_extract_data_objects.html

c⃝ Qafoo GmbH 2010 - 2017

138 Chapter 5. Refactoring

}
}

Using this data object strips down the method signature to three parameters:
public function f i n dProducts (ProductC r i t e r i a $ c r i t e r i a , $ l i m i t = 10 , $ o f f s e t = 0)
{

/ / . . .
}

It is much more readable now and it is much easier to introduce additional criteria.
You can even change the structure used inside the criteria fields with some effort
and without affecting the using code pieces.

It might make sense to use a base class for your data objects, as described
in an earlier post (See: Struct classes in PHP), since PHP does not have native
support for data objects and it can provide you with additional convenience.

5.7.2 Associative Arrays
Arrays in PHP are a powerful data type. Whenever there is data to be structured it
is easy to just create a (potentially deeply nested) mixture of struct and list out of
thin air. That makes them a really good tool for prototyping, for example:
public function getDiscoun ts (array $checkout)
{

/ /
}

But once the prototyping phase is over they will soon become a real pain: There
is no defined way to document array structures so the IDE will not be able to tell
you which fields exist, what their purpose is and what type the fields expect. The
only way to know is reading the code that creates and the code that uses the array
structure. Due to the lack of auto-completion on field names there is a high risk
for typos. And because it is so easy to add new fields people will eventually add
whatever they need at a single place making your array more and more god like.

It is therefore a good idea to replace any associative array structure with a data
object once the structure has stabilized a bit. For example:
class Checkout
{

/ ∗ ∗

c⃝ Qafoo GmbH 2010 - 2017

5.7 Extracting Data Objects 139

∗ @var Checkout I tem []
∗ /

public $items ;

/ ∗ ∗
∗ @var Address []
∗ /

public $shipp ingAddress ;

/ / . . .
}

With this approach you actually solidify the structure you prototyped as an array and
create sensible documentation and auto-completion support for it. In addition you
raise the barrier for adding arbitrary new fields by adding one more thinking step.

5.7.3 Smooth Migration
In most cases a migration towards using a data object cannot be accomplished
within some minutes. This only works if the method for which you are attempting to
change the signature is used infrequently. If that is the case: lucky you, go ahead
and perform the changes. Otherwise you should perform a smooth migration over
time. You can most probably apply the following steps mechanically.

Create a New Method
Because you cannot simple change the original method signature you need a new
method right beside the original one. For example:
/ ∗ ∗
∗ @deprecated Use c a l c u l a t eDiscoun ts () ins tead !
∗ /

public function getDiscoun ts (array $checkout)
{

/ /
}

public function c a l c u l a t eDiscoun ts (Checkout $checkout)
{

/ /
}

The @deprecated annotation added to the original method is quite handy, because
IDEs can display warnings to developers still using the old method.

c⃝ Qafoo GmbH 2010 - 2017

140 Chapter 5. Refactoring

Of course, having these two methods lurking around right beside each other is
not nice. But remember that this is only a temporary state until you finished the
refactoring entirely.

Dispatch Old Method To New
After adding the new method you probably have code duplication. To remove that,
remove the body of the old method and call the new one instead, migrating the
incoming array to the new data object:
/ ∗ ∗
∗ @deprecated Use c a l c u l a t eDiscoun ts () ins tead !
∗ /

public function getDiscoun ts (array $checkout)
{

r e t u r n $ th is −>c a l c u l a t eDiscoun ts (Checkout : : fromLegacyAr ray ($checkout) ;
}

public function c a l c u l a t eDiscoun ts (Checkout $checkout)
{

/ /
}

To have the conversion from the original array to the new object in a single place I
added a factory method (one of the few cases where static is OK) to the Checkout
class.

Change Use Case
Now it’s time to change the use-case you are working on - the place which motivated
you to actually start the refactoring:
/ / . . . c a l l i n g code . . .
$d iscounts = $whereverTheMethod I s−>c a l c u l a t eDiscoun ts (

Checkout : : fromLegacyAr ray ($checkoutAr ray)
) ;

Congrats, you finished the first step into eliminating the deprecated method from
your project. :)

Iterate
You should make it a rule in your project to perform this refactoring step whenever
you encounter a use of the old method. After some weeks, search your code for

c⃝ Qafoo GmbH 2010 - 2017

5.7 Extracting Data Objects 141

the (hopefully few) remaining method calls and change them. Once you reached
that state you can safely remove the deprecated method.

While you are a big step further now the end is still not reached. Look through
your code and find all usages of the Checkout::fromLegacyArray()methods. These
are the places where the original array structure is still used. You can now start re-
placing these cases in a similar way as explained here.

c⃝ Qafoo GmbH 2010 - 2017

142 Chapter 5. Refactoring

5.8 Basic Refactoring Techniques: Extract Method

Benjamin Eberlei at 7. March, 201716

Refactoring is the process of restructuring code without changing its behaviour
and the technique "Extract Method" is one of the most important building blocks of
refactoring.

With extract method you move a fragment of code from an existing method into
a new method with a name that explains what it is doing. Therefore this technique
can be used to reduce complexity and improve readability of code.

In this post I want to explain the mechanics of extract method using an example
so that you have a checklist of steps when performing this refactoring. Extract
method is a technique that you can use even without tests, because the potential
risks of breaking are manageable when you follow the steps.

I have performed these steps countless times myself and the more often you
perform them the less likely will you break the code.

Knowing all the manual steps that are necessary for extract method is a great
benefit even if you are using PHPStorm’s powerful automated Extract Method func-
tionality in the end. Just understanding each step helps you selecting the best code
blocks for refactoring, something that PHPStorm cannot do for you.

The example is a method from a controller that directly uses a library called
Solarium to access a Solr database, including some relatively complex low level
filtering code:
public function searchAc t i o n (Request $request)
{

i f ($request−>has (’ query ’) | | $request−>has (’ type ’)) {
$solar ium = new \So lar ium_Cl i e n t () ;
$se lec t = $solar ium−>createSe l e c t () ;

i f ($request−>has (’ type ’)) { / / f i l t e r by type
$ f i l t e rQueryTerm = s p r i n t f (

’ type:%s ’ ,
$se lec t −>getHe lpe r ()−>escapeTerm ($request−>get (’ type ’))

) ;
$ f i l t e rQuery = $se lec t −>createF i l t e r Query (’ type ’)−>setQuery ($ f i l t e rQ

ueryTerm) ;
$se lec t −>addF i l t e r Query ($ f i l t e rQuery) ;

16https://qafoo.com/blog/098_extract_method.html

c⃝ Qafoo GmbH 2010 - 2017

5.8 Basic Refactoring Techniques: Extract Method 143

}

/ / more f i l t e r i n g l o g i c here

$ r e s u l t = $solar ium−>s e l e c t ($query) ;

r e t u r n [’ r e s u l t ’ => $ r e s u l t] ;
}

r e t u r n [] ;
}

As a rule of thumb, code in a method should work on the same level of abstraction
(high- vs low-level code) to hide unnecessary details from the programmer when
reading code. Mixing high level controller with low level data access does not hold
up to that rule.

5.8.1 Step 1: Identify code fragment to extract
We want to extract all the Solarium related code into a new method on the controller
to hide the details of how searching with Solarium works on the low level.

The primary goal is find all consecutive lines that belong together semantically.
Which lines should be part of the new method and which should stay? This first
step is not always easy, practice is everything.

Everything from line 4 (instantiating Solarium) to line 15 (calling select) belongs
to this concern. We start using the solarium object and its helpers in line 4 and
never use them anymore after line 15.

Don’t think about this too long though, keep in mind that refactorings can be
easily reverted and redone.

5.8.2 Step 2: Create empty method and copy code
If we have a candidate block of code to extract, we create a new empty method
without arguments and give it a name that describes what the block is doing:
private function search ()
{
}

The next step is to copy over lines 4-15 into the new method:

c⃝ Qafoo GmbH 2010 - 2017

144 Chapter 5. Refactoring

private function search ()
{

$solar ium = new \So lar ium_Cl i e n t () ;
$se lec t = $solar ium−>createSe l e c t () ;

i f ($request−>has (’ type ’)) { / / f i l t e r by type
$ f i l t e rQueryTerm = s p r i n t f (

’ type:%s ’ ,
$se lec t −>getHe lpe r ()−>escapeTerm ($request−>get (’ type ’))

) ;
$ f i l t e rQuery = $se lec t −>createF i l t e r Query (’ type ’)−>setQuery ($ f i l t e rQueryT

erm) ;
$se lec t −>addF i l t e r Query ($ f i l t e rQuery) ;

}

/ / more f i l t e r i n g l o g i c here

$ r e s u l t = $solar ium−>s e l e c t ($query) ;
}

This method will not work yet, but little steps are the key to avoid breaking the code.
The next steps in the refactoring will make this new method usable.

5.8.3 Step 3: Identify undeclared variables that must be arguments
All variables that have been declared above line 4 in our original method are missing
from the new method now and the solution is to pass them as arguments.

How to find all these variables? If you are using an IDE the previous code block
should now be littered with references to using undeclared variables. If you are
using Vim or another editor you must find these occurrences yourself.

In our example code, the only variable that is used inside the new method and
was declared before line 4 is $request, so we pass it as argument:
private function search (Request $request)
{

/ / . . .
}

5.8.4 Step 4: Identify variables that are still used in old method
The next step is to check which variables declared inside our new method search
are still used after the last extracted line 15.

c⃝ Qafoo GmbH 2010 - 2017

5.8 Basic Refactoring Techniques: Extract Method 145

Your IDE can help you with this. Simply comment out the lines you extracted
then it will warn you about using undeclared variables used after the extracted lines.
If you use an editor you must again find this out yourself by studying the code.

In our example this applies to $result which is again used in line 17. All vari-
ables of this kind must be returned from the new method and assigned to a variable
with the same name to require as little changes as possible:
private function search (Request $request)
{

/ / . . .

r e t u r n $ r e s u l t ;
}

What if there are more then one variable being declared inside and used outside
the method? There are several solutions that each has their own set of downsides:

1. Return an array of the variables (emulation of multiple return values). You can
use list() to assign them to non-array variables in the old method.

2. Only return scalar values and pass objects as arguments and modify them
3. Pass scalar variable into new method by reference and modify it

The first method is the mechanically simplest and should be preferred, because
there is less risk of breakage with this approach. Ignore the nagging desire to
introduce an object or a complex array to make this code less ugly. You can do that
if you want after the refactoring is done and the code works.

5.8.5 Step 5: Call new method from original method
We have commented out the original code in the previous step to find return values,
so we must now call the new method instead.

Pass all the arguments you identified in step 4 and 5 and declare all return
values with variables with the same they will be used with later:
public function searchAc t i o n (Request $request)
{

i f ($request−>has (’ query ’) | | $request−>has (’ type ’)) {
$ r e s u l t = $ th is −>search ($request) ;
/ / commented out o r i g i n a l code here

r e t u r n [’ r e s u l t ’ => $ r e s u l t] ;
}

c⃝ Qafoo GmbH 2010 - 2017

146 Chapter 5. Refactoring

/ / . . .
}

Now I can execute this code again (either manually or with existing integration tests).
The original code is just commented out so that when problems occur I can read it
next to the new code and easily compare for mistakes. Delete this code if you are
sure the extract method has worked.

Congratulations, you have applied the heuristics to perform extract method as
safely as possible even if you don’t have tests. Still there are some risks with every
code block you extract that you should know to check for.

5.8.6 Risky Extract Method Checklist
There is some risk with extract method, even if you performed the mechanics per-
fectly it can still alter the behaviour of your original code. You should think about
the side effects of your new method before executing it the first time. With experi-
ence you learn to spot potential problems before even selecting a code fragment to
extract.
• Arrays are not passed by reference, but many methods subtly change them

in a way that has an effect on the parent method. Example next() or sort().
• Side effects to instance variables or in the global state can sometimes have

different outcomes when extracted into a method. Make sure to check this
more carefully when your extracted method is called in a loop.

• Variables that are declared before and used after the extracted method re-
quire special care as you must pass them as argument (step4) and returning
them (step5) and are sometimes better passed by reference instead.

5.8.7 Fin
Extract method is especially powerful and reduces the complexity if the new method
contains one or many variables that are declared inside the new method and are not
returned, because they are not needed afterwards. As a programmer this reduces
the mental capacity needed for understanding the original method massively.

From my experience it takes a lot of training to select the right lines to extract
and extract method is a technique I still practice actively and improve on.

c⃝ Qafoo GmbH 2010 - 2017

5.8 Basic Refactoring Techniques: Extract Method 147

Extract Method is a fundamental building block for more advanced refactorings
such as Extract Service and refactoring towards different design patterns. These
are topics we will cover in future blog posts about refactoring.

c⃝ Qafoo GmbH 2010 - 2017

148 Chapter 5. Refactoring

5.9 How to Perform Extract Service Refactoring When You Don’t Have Tests

Benjamin Eberlei at 21. March, 201717

When you are refactoring in a legacy codebase, the goal is often to reduce com-
plexity or separate concerns from classes, methods and functions that do too much
work themselves. Primary candidates for refactoring are often controller classes or
use-case oriented service classes (such as a UserService).

Extracting new service classes is one popular refactoring to separate concerns,
but without tests it is dangerous because there are many ways to break your original
code.

This post presents a list of steps and checklists to perform extract service when
you don’t have tests or only minimal test coverage. It is not 100% safe but it provides
small baby-steps that can be applied and immediately verified.

The primary risk of failure is the temptation to do too many steps at the same
time, delaying the re-execution and verification that the code still works for many
minutes or even hours. Read more about this in How to Refactor Without Breaking
Things (See: How to Refactor Without Breaking Things).

This post builds upon the previous post on Extract Method (See: Basic Refac-
toring Techniques: Extract Method), where we already moved a dedicated concern
with low-level code to query a Solr database into a new method.
public function searchAc t i o n (Request $request)
{

i f ($request−>has (’ query ’) | | $request−>has (’ type ’)) {
$ r e s u l t = $ th is −>search ($request) ;

r e t u r n [’ r e s u l t ’ => $ r e s u l t] ;
}

r e t u r n [] ;
}

private function search (Request $request)
{

$se lec t = $ th is −>solar ium−>createSe l e c t () ;

i f ($request−>has (’ type ’)) { / / f i l t e r by type
$ f i l t e rQueryTerm = s p r i n t f (

17https://qafoo.com/blog/099_extract_service_class.html

c⃝ Qafoo GmbH 2010 - 2017

5.9 How to Perform Extract Service Refactoring When You Don’t Have Tests 149

’ type:%s ’ ,
$se lec t −>getHe lpe r ()−>escapeTerm ($request−>get (’ type ’))

) ;
$ f i l t e rQuery = $se lec t −>createF i l t e r Query (’ type ’)−>setQuery ($ f i l t e rQueryT

erm) ;
$se lec t −>addF i l t e r Query ($ f i l t e rQuery) ;

}

/ / more f i l t e r i n g l o g i c here

$ r e s u l t = $solar ium−>s e l e c t ($query) ;

r e t u r n $ reesu l t ;
}

Our goal is to extract all the Solr code into a new SolrSearchService class. Before
you start you should have already used Extract Method to create one or several
methods that you want to move to a new class.

5.9.1 Step 1: Create Class and Copy Method
Similar to the extract method refactoring we start by copying code 1:1 without chang-
ing it for now.
class So l rSearchServ i ce
{

private function search (Request $request)
{

$se lec t = $ th is −>solar ium−>createSe l e c t () ;

i f ($request−>has (’ type ’)) { / / f i l t e r by type
$ f i l t e rQueryTerm = s p r i n t f (

’ type:%s ’ ,
$se lec t −>getHe lpe r ()−>escapeTerm ($request−>get (’ type ’))

) ;
$ f i l t e rQuery = $se lec t −>createF i l t e r Query (’ type ’)−>setQuery ($ f i l t e rQ

ueryTerm) ;
$se lec t −>addF i l t e r Query ($ f i l t e rQuery) ;

}

/ / more f i l t e r i n g l o g i c here

$ r e s u l t = $solar ium−>s e l e c t ($query) ;

r e t u r n $ reesu l t ;
}

c⃝ Qafoo GmbH 2010 - 2017

150 Chapter 5. Refactoring

}

5.9.2 Step 2: Fix Visibility, Namespace, Use and Autoloading
You can modify the private visibility to public as the first step, because we need
to call this method from the original class it must be public.

You must also copy over all the use statements that are in the original class,
because otherwise the new class could import a class from the wrong location.
use Symfony \Component \Ht t p Foundat ion \Request ;

class So l rSearchServ i ce
{

public function search (Request $request)
{

/ / . . .
}

}

I usually copy all use statements if I extract a larger block of code, because then I
don’t miss a reference in the moved codeblock. If the block is smaller I only copy
the ones that are actually used in the block. An IDE helps here because it can
highlight the superfluous use statements and recommend missing ones.

As a last point in this section, verify that this new class is autoloadable, so that
you can easily use it from tests and the original class.

5.9.3 Step 3: Check for Instance Variable Usage
As a next step you must look at the extracted code and find all references to in-
stance variables, because our new class doesn’t have those instance variables
itself, they are still on the original class.

There are several cases of instance variable uses that need different handling:
1. You find an instance variable that is only used in the extracted method itself.

Then you can copy (don’t delete it just yet) the variable to the new service. You
could perform a refactoring to convert the instance variable to a local variable
if the state is not needed across multiple calls to the method.

c⃝ Qafoo GmbH 2010 - 2017

5.9 How to Perform Extract Service Refactoring When You Don’t Have Tests 151

2. The instance variable is another object that is injected into the originals class
constructor or with setter injection. Copy the instance variable over to the new
object and introduce a constructor that sets this dependency.

3. The instance variable is used for state that is only read in the new class.
Convert the instance variable into a local variable on the new class and pass
it as a new argument to the extracted method.

4. The instance variable is used for state that is read, changed or both in the new
class. Convert the instance variable into a local variable on the new class and
pass it to a setter on the new service before you call your news method, and
retrieve it back with a getter after you called the service.

Method 4 works for all use cases, always use it when you are unsure, even if it
requires the most code and does not look very clean.

It requires a bit of experience to quickly categorize instance variables into these
groups and what the best course of action is. Don’t be discouraged if the first
attempts lead to nothing or weird APIs, remember that refactoring is a constant
process and intermediate steps may actually make the code worse.

In our example we have one instance variable $this->solarium which is a
service used in the parent class as well, point 2 in our list. We add the following
code to SolrSearchService:
class So l rSearchServ i ce
{

private $solar ium ;

public function __ cons t ruc t (\ So lar ium_Cl i e n t $solar ium)
{

$ th i s −>solar ium = $solar ium ;
}

}

This class should now be usable independently of the original class. You should
now write some tests for it, in this case integration tests, because we rely on third
party APIs and a database.

Make sure to use dependency injection for the new class even if your depen-
dencies are available as singletons or from a static registry. This way you at least
this class is testable and you can make use of mock objects to write those tests.

c⃝ Qafoo GmbH 2010 - 2017

152 Chapter 5. Refactoring

5.9.4 Step 4: Use New Class Inline
The original class still uses the old extracted method. Comment the body of the
method out and instantiate the new class inline, pass all the dependencies into the
constructor or as arguments to the new method:
private function search (Request $request)
{

/ / commented out o ld code
$so l rSearchServ i ce = new So l r SearchServ i ce ($ th is −>solar ium) ;
$ r e s u l t = $so l rSearchServ ice −>search ($request) ;

r e t u r n $ r e s u l t ;
}

This method looks more complex if you have instance variables mentioned as item
3, 4 or 5 in the previous section.

The original code is now runnable. It should work out of the box if you have
followed all the steps correctly. Remove the commented out old code and remove
instance variables that were entirely moved to the new class (type 1).

You should test the code manually (or with functional tests (See: Using Mink in
PHPUnit)) and commit your current changes now.

5.9.5 Step 5: Inline Method
The search method on the original class is not needed anymore, you can inline the
method into the location where its called from:
public function searchAc t i o n (Request $request)
{

i f ($request−>has (’ query ’) | | $request−>has (’ type ’)) {
$so l rSearchServ i ce = new So l rSearchServ i ce ($ th is −>solar ium) ;
$ r e s u l t = $so l rSearchServ ice −>search ($request) ;

r e t u r n [’ r e s u l t ’ => $ r e s u l t] ;
}

r e t u r n [] ;
}

c⃝ Qafoo GmbH 2010 - 2017

5.9 How to Perform Extract Service Refactoring When You Don’t Have Tests 153

5.9.6 Step 6: Move Instantiation into Constructor or Setter
This step is optional, but instantiating the SolrSearchService in your runtime code
is not a good practice. You can create a new instance variable solrSearchService
and move the new to where the solarium instance variable is already assigned:
private $solar ium ;
private $so l rSearchServ i ce ;

public function __ cons t ruc t (\ So lar ium_Cl i e n t $solar ium)
{

$ th i s −>solar ium = $solar ium ;
$ th is −> s o l rSearchServ i ce = new So l rSearchServ i ce ($solar ium) ;

}

public function searchAc t i o n (Request $request)
{

i f ($request−>has (’ query ’) | | $request−>has (’ type ’)) {
$ r e s u l t = $ th is −> s o l rSearchServ ice −>search ($request) ;

r e t u r n [’ r e s u l t ’ => $ r e s u l t] ;
}

r e t u r n [] ;
}

This step makes sense if you continue extracting additional methods from the orig-
inal class to the new SolrSearchService, because they can now reuse the same
instance.

5.9.7 Step 7: Cleanup Dependency Injection
This step is optional and is only possible if you are already injecting dependen-
cies using a factory or containers. After extracting all methods that work on the
solarium instance variable to the new service we don’t need the instance variable
on the original class anymore.

At this point we can switch the injected dependency to be the SolrSearchService
directly:
private $so l rSearchServ i ce ;

public function __ cons t ruc t (So l rSearchServ i ce $so l rSearchServ i ce)
{

$ th i s −> s o l rSearchServ i ce = $so l rSearchServ i ce ;

c⃝ Qafoo GmbH 2010 - 2017

154 Chapter 5. Refactoring

}

5.9.8 Fin
Compared to the extract method refactoring, extracting a service requires more
steps and each of them is more risky. On top of that IDEs usually don’t provide
this refactoring as an automatic procedure, so you have to do it manually. But even
though the refactoring is risky, you should learn and master it, because it is very
effective at splitting up code that started out simple and got more complex over
time.

c⃝ Qafoo GmbH 2010 - 2017

5.10 How You Can Successfully Ship New Code in a Legacy Codebase 155

5.10 How You Can Successfully Ship New Code in a Legacy Codebase

Benjamin Eberlei at 19. April, 201718

The greek philosopher Heraclitus already knew that "change is the only con-
stant" and as software developers we know this to be true for much of software
development and business requirements.

Usually the problems software needs to solve get more complex over time. As
the software itself needs to model this increased complexity it is often necessary
to replace entire subsystems with more efficient or flexible solutions. Instead of
starting from scratch whenever this happens (often!), a better solution is to refactor
the existing code and therefore reducing the risk of losing existing business rules
and knowledge.

A good strategy for this kind of change is called "Branch By Abstraction". While
the term is certainly clumsy and overloaded, the idea itself is genious.

Instead of introducing a long running branch in your version control system
(VCS) where you spend days and months of refactoring, you instead introduce
an abstraction in your code-base and implement the branching part by selecting
different implementations of this abstraction at runtime.

Explaining Branch By Abstraction without an example is not a good idea, so lets
take a look at three different examples to get an understanding how to make use of
branch by abstraction:

5.10.1 Example 1: Replacing the Backend in a CMS
Up to eZPublish version 4, the popular CMS had a very relational-database centric
API and model where all the abstractions made it quite clear that the underlying
database is relational. In addition the content repository was leaky about another
relational abstraction, the fact that one attribute is stored in one row because of the
use of a highly sophisticated Entity-Attribute-Value model.

Those assumptions in the API and the inability to implement different data mod-
els made it very hard to scale eZPublish 4 beyond a certain number of content
objects. With the rise of Solr and ElasticSearch customers wanted to use the pow-
erful search engines, but the API limitations made this nearly impossible.

18https://qafoo.com/blog/101_branch_by_abstraction.html

c⃝ Qafoo GmbH 2010 - 2017

156 Chapter 5. Refactoring

With eZPublish 5 a new API was introduced with a fully object-oriented interface
and a new content model abstraction.

The idea was to allow developers to work towards switching the storage model
step by step. You could replace usages of the old API with the new API which would
already allow to benefit of NoSQL search based implementations, with a fallthrough
to the legacy database schema. After a full switch to the new API it would also be
possible to replace the legacy database schema entirely.

Critical in using branch by abstraction in such a scenario is finding the right API
that is not a leaky abstraction for the abstracted storage engine anymore.
<?php

$query = new Query ([
’ f i l t e r ’ => new Cr i t e r i o n \ L o g i c a lAnd ([

new Cr i t e r i o n \ContentType I d e n t i f i e r (" a r t i c l e ") ;
new Cr i t e r i o n \ F i e l d (" s ta tus " , Opera to r : : EQ, " xyz ") ,
new Cr i t e r i o n \ F u l l Text ("He l l o Wo r l d ") ;
new Cr i t e r i o n \V i s i b i l i t y (C r i t e r i o n \V i s i b i l i t y : : V IS IBLE) ,

])
]) ;

$searchRe s u l t = $searchServ ice −> f i n dContent ($query) ;

You can see how this API exposes query functionality generically, but makes sure
to add semantic meaning such as the FullText criterion. This allowed eZ Systems
to implement the API both with the old legacy database schema as a first imple-
mentation, but also experiment with Solr and other search technologies to achieve
much better performance and scalability.

5.10.2 Example 2: Rewriting a submodule without changing public API
Very early in my career I was responsible for maintaining a fairly large newsletter
system that had pretty bad APIs and was a large mess of spaghetti code.

One center piece of this system was the parser that took free form HTML, some
configuration flags and text input and generated an HTML email that included track-
ing data and links, inline CSS styles, images uploaded to a CDN and mangled the
HTML such that Outlook and the likes rendered it correctly.

The code for this large system was hidden in a single god-function inside a
class:

c⃝ Qafoo GmbH 2010 - 2017

5.10 How You Can Successfully Ship New Code in a Legacy Codebase 157

class Ma i l i n g
{

public function generateMa i l ()
{

/ / 2000−3000 l i n e s o f PHP pars ing goodness !

$ th i s −>save (array (’ generated_mail ’ => $parsedHtmlBody)) ;
}

}

The code was hard to test and was a frequent source of small and nasty bugs.
When we onboarded a second customer onto this system and he needed different
configuration inputs everything fell apart.

We built a new mail parser from scratch with a nice new API. It was entirely
stateless and accepted a large object of inputs and produced a large object of
outputs that could then be put into the existing database as required. The code
was feature flagged to our new customer first:
class Ma i l i n g
{

public function generateMa i l ()
{

i f (Con f i g : : getTenant () === ’new_customer ’) {
$parser = new Ma i l Parser (/ ∗ some dependencies ∗ /) ;
$parsedMa i l = $parser−>parse (

new Ma i lD r a f t (array (/ ∗ tons o f i npu ts ∗ /))
) ;

$ th i s −>save (array (’ generated_mail ’ => $parsedMa i l −>body)) ;

r e t u r n ;
}

/ / o ld 2000−3000 l i n e s o f PHP goodness !
}

}

The combination of highly unit tested code and some weeks of production experi-
ence with a subset of customers finally gave us confidence to get rid of the old code
entirely and we ended up with a shiny nice API within this legacy code base, but
entirely decoupled from it.

c⃝ Qafoo GmbH 2010 - 2017

158 Chapter 5. Refactoring

5.10.3 Example 3: Github reimplements Merge button
In December 2015, Github blogged19 about their use of branch by abstraction to
replace how the merge button works across the whole site. This critical feature of
Github needed extensive testing so they used a library called Scientist to devise an
experiment.

They refactored the old code into a dedicated method and then wrote new code
with the same method signature. The scientist library then allows them to run both
new and old code after each other. The library checks if the response of both
methods is the same and logs an error if its not the case.

This strategy is a very powerful use-case of branch by abstraction.

5.10.4 The Process
The process of implementing Branch By Abstraction usually follows a certain set of
steps while each step already provides you with a sensible outcome. The basic we
have to work with looks something like this:

Client Code

Client Code

Client Code

Implicit Concept /
Old Implementation

We have several "Clients" (classes, functions) which use and probably imple-
ment an implicitly defined concept like in one of the examples above. This might
be inline code (Example 2) or already code in other classes which is called using
APIs which do not describe the actual domain well (Example 1). Usually it is a
combination of both.

19https://githubengineering.com/move-fast/

c⃝ Qafoo GmbH 2010 - 2017

5.10 How You Can Successfully Ship New Code in a Legacy Codebase 159

Step 1: Refactoring The First Client
We start by picking one of those "Clients" (not the most complex one) and see
how this Client uses the implicitly defined concept. We create a new API for this.
This is very similar to Extract Methods (See: Basic Refactoring Techniques: Ex-
tract Method) or Extract Classes (See: How to Perform Extract Service Refactoring
When You Don’t Have Tests) refactorings. While moving the old code we also create
an abstraction (interface, set of interfaces).

Do not over-analyze in this step. Just extract the Facade which is required by
this one Client and do not try to already cover all other Clients concepts. We will
get there. It is best to just move the old code behind a Facade (implementing the
abstraction) to make sure the system behaves like before and we do not break
something. Functional Tests (See: Using Mink in PHPUnit) are really useful when
doing such refactorings (See: How to Refactor Without Breaking Things).

Client Code

Client Code

Client Code
Implicit Concept /

Old Implementation

Facade Abstraction

Already after this step the code in the first Client will be much more readable.
You already did something beneficial to the software.

Step 2: Iterate Across Clients
We continue to do this with every client. You will have to adapt the Facade and the
abstraction during this process. There will always be edge cases in in some clients

c⃝ Qafoo GmbH 2010 - 2017

160 Chapter 5. Refactoring

you will not have thought of initially. But this is also the beauty behind this approach.
We slowly discover and understand the implicit concept / our domain.

Client Code

Client Code

Client Code
Implicit Concept /

Old Implementation

Facade Abstraction

Step 3: Finish The Clients
We do this until all clients are refactored. The clients are done now and so is our
abstraction. We now understood the concept and have modelled it with a new set
of interfaces. This is great!

Client Code

Client Code

Client Code
Implicit Concept /

Old Implementation

Facade Abstraction

c⃝ Qafoo GmbH 2010 - 2017

5.10 How You Can Successfully Ship New Code in a Legacy Codebase 161

But there still is this Facade which contains all the old ugly code. If the code is
working well enough and we do not have to change it often it is valid to just keep it
there and ignore it. It will not be maintainable, but if there are no requirements to
change, adapt or extend it – then this is fine. Feel free to just stop here.

Step 4: Starting a new Implementation
If we decided that we need a new implementation because the old one is just un-
maintainable we can start with this now. We have an abstraction which we "just"
need to implement. Please do this test-driven. With tests we can be pretty sure that
the new implementation will succeed and fulfil all the requirements of our abstrac-
tion. Since the Facade, the Verifier and the new implementation all fulfill the same
interface we should be able to replace the implementation used by the Clients using
our Dependency Injection Container or with some Factory.

Client Code

Client Code

Client Code

Facade

Abstraction

Implicit Concept /
Old Implementation

New
Implementation

Verifier

But we only really know that the new implementation is a success if we are
testing it in production. And with the given abstraction we can implement a Verifier
which ensures exactly this.

The Verifier knows the legacy Facade and the new code – it also implements
the abstraction. The Verifier now always calls the Facade wrapping the old code

c⃝ Qafoo GmbH 2010 - 2017

162 Chapter 5. Refactoring

and the new implementation and compares their output. It can optionally even com-
pare additional metrics like speed and memory usage. By using this in production
for some time and logging all differences we can be pretty sure that the new imple-
mentation will be ready for production.

Client Code

Client Code

Client Code

Facade

Abstraction

Implicit Concept /
Old Implementation

New
Implementation

Verifier

In this step you might also find bugs in the old code, just like Github did in the
example linked before.

Step 5: Delete the Old Code
Now comes the most beautiful step: Deleting the old code.

c⃝ Qafoo GmbH 2010 - 2017

5.10 How You Can Successfully Ship New Code in a Legacy Codebase 163

Client Code

Client Code

Client Code

AbstractionNew
Implementation

Once we are sure everything works there is no need to keep the Verifier nor
the Facade wrapping the old code. You can throw everything away and now only
maintain and adapt the new clean code.

5.10.5 Conclusion
Branch by abstraction is not an easy skill to master and the implementation is al-
ways extremely specific to the use-case. But the benefits of avoiding long-running
branches and complex merges, being able to test old vs new code and gradually
rolling out the new functionality to only a subset of users are so large, that you
should definately learn about it. To be honest, for me it is one reason why refactor-
ing in a large legacy code can be so much fun!

c⃝ Qafoo GmbH 2010 - 2017

164 Chapter 5. Refactoring

5.11 Extracting Value Objects

Benjamin Eberlei at 16. May, 201720

Software systems usually get more complex over time. In the beginning a vari-
able starts out to represent something very simple with very few rules and con-
straints that can are enforced in a single location of the code.

Take this code example where the user selects a start and an end date to query
a list of events:
class EventCo n t r o l l e r
{

public function l i s t Ac t i o n (Request $request)
{

$ s t a r t = new \DateTime ($request−>query−>get (’ s t a r t ’ , ’−60 minute ’)) ;
$end = new \DateTime ($request−>query−>get (’ end ’ , ’now ’)) ;

i f ($ s t a r t > $end) {
$tmp = $end ;
$end = $ s t a r t ;
$ s t a r t = $tmp ;

}

r e t u r n [
’ events ’ => $ th is −>eventRepos i to ry −> f i n dBetween ($s ta r t , $end) ,

] ;
}

public function l i s t TodayAc t i o n ()
{

$ s t a r t = new DateTime (’ today 00 :00 :00 ’) ;
$end = new DateTime (’ today 23 :59 :59 ’) ;

r e t u r n [
’ events ’ => $ th is −>eventRepos i to ry −> f i n dBetween ($s ta r t , $end) ,

] ;
}

}

This simple switch of start and end date when they are inverted is common and the
simplicity of the code often means it is copied rather than abstracted into a method.

But how do we extract a method for this code? We could add a method switch
StartEnd() on the EventController, but look how ugly that looks like:

20https://qafoo.com/blog/103_extracting_value_objects.html

c⃝ Qafoo GmbH 2010 - 2017

5.11 Extracting Value Objects 165

private function switchS t a r t End ($s ta r t , $end)
{

i f ($ s t a r t > $end) {
$tmp = $end ;
$end = $ s t a r t ;
$ s t a r t = $tmp ;

}

r e t u r n array ($s ta r t , $end) ;
}

public function l i s t Ac t i o n (Request $request)
{

$ s t a r t = new \DateTime ($request−>query−>get (’ s t a r t ’ , ’−60 minute ’)) ;
$end = new \DateTime ($request−>query−>get (’ end ’ , ’now ’)) ;

l i s t ($s ta r t , $end) = $ th is −>switchS t a r t End ($s ta r t , $end) ;

r e t u r n [
’ events ’ => $ th is −>eventRepos i to ry −> f i n dBetween ($s ta r t , $end) ,

] ;
}

Plus, the biggest downside of this refactoring is the fact that you cannot use switch
StartEnd in other places that perform date range handling.

The problem here is a code smell that is widespread in every codebase I have
ever seen and is called "Primitive Obsession". It means that as developers we often
rely on the most basic types of our programming language, instead of increasing
the abstraction and introducing new types. In object oriented programming a type
is equivalent to a new class.

Object oriented systems often have tons of classes that work on fullfilling a use-
case, but they are not really types like string, integer or DateTime are.

In our example we are missing a DateRange class, and introducing it will imme-
diately simplify our code and allow us to heavily unit-test business logic related to
date ranges.
class DateRange
{

public function __ cons t ruc t (DateTime $s ta r t , DateTime $end)
{

i f ($ s t a r t > $end) {
$tmp = $end ;
$end = $ s t a r t ;

c⃝ Qafoo GmbH 2010 - 2017

166 Chapter 5. Refactoring

$ s t a r t = $tmp ;
}

$ th i s −> s t a r t = $ s t a r t ;
$ th i s −>end = $end ;

}

public function getS t a r t ()
{

r e t u r n $ th is −> s t a r t ;
}

public function getEnd ()
{

r e t u r n $ th is −>end ;
}

}

Writing a unit-test for this is simple. Writing a test for the same code embedded into
the Controller may be way too much work for the benefit.

We don’t have to stop here though, we also have code constructing the Dat-
eRange in our controller that we can extract into the new value object:
class DateRange
{

public s t a t i c function today ()
{

$ s t a r t = new DateTime (’ today 00 :00 :00 ’) ;
$end = new DateTime (’ today 23 :59 :59 ’) ;

r e t u r n new s e l f ($s ta r t , $end) ;
}

public s t a t i c function fromSt r i n g s ($s ta r t , $end)
{

r e t u r n new s e l f (new DateTime ($ s t a r t) , new DateTime ($end)) ;
}

}

Again, these methods on the DateRange can be easily tested. If we use the Dat-
eRange everywhere in our code we could easily add more code into the fromS
tringsmethod that does proper error handling when the strings are not valid dates
for example.

Meanwhile the controller code is refactored into something very boring, all the
logic is hidden in small testable classes:

c⃝ Qafoo GmbH 2010 - 2017

5.11 Extracting Value Objects 167

public function l i s t Ac t i o n (Request $request)
{

$range = DateRange : : fromSt r i n g s (
$request−>query−>get (’ s t a r t ’ , ’−60 minute ’) ,
$request−>query−>get (’ end ’ , ’now ’)

) ;

r e t u r n [
’ events ’ => $ th is −>eventRepos i to ry −> f i n dBetween ($range) ,

] ;
}

public function l i s t TodayAc t i o n ()
{

r e t u r n [
’ events ’ => $ th is −>eventRepos i to ry −> f i n dBetween (DateRange : : today ()) ,

] ;
}

Introducing value objects is extremely helpful in structuring data and making small
business rules reusable and abstracted across a large code base. The best candi-
dates for this kind of refactoring in web applications are classes related to date
(Week, DateRange, DateIterator, ...), Money, Email, IPAddress, URLs, slugged
Strings, integers used as bitmasks and many others.

As soon as you detect business rules in your code that operate on primitive
strings, integers or PHPs Date objects (they are not too powerful) you should think
about extracting a value. If you wan’t to avoid creating tons of object you can wait
for 3-5 different rules on the same kind of primitive type or the same rule spread in
3-5 locations.

c⃝ Qafoo GmbH 2010 - 2017

168 Chapter 5. Refactoring

5.12 Refactoring Singleton Usage to get Testable Code

Benjamin Eberlei at 27. June, 201721

So your code base is littered with singletons and using them? Don’t worry,
you can start refactoring them out of your code base class by class and introduce
increased testability at every step. This strategy is very simple to implement and
the propability of breaking your code is very low, especially when you are becoming
more experienced with this technique.

Take the following example code of a SearchService that acceses a singleton
to perform its work:
class SearchServ i ce
{

public function searchAc t i o n ($querySt r i n g , $type)
{

/ ∗ ∗ @var $solar ium \Solar ium_C l i e n t ∗ /
$solar ium = Solar ium : : get I nstance () ;
$se lec t = $solar ium−>createSe l e c t () ;

/ / More and complex f i l t e r i n g l o g i c to t e s t

$ r e s u l t = $solar ium−>query ($se lec t) ;

r e t u r n $ r e s u l t ;
}

}

To make this code testable without the singleton, we can use the lazy initialization
pattern. The first step is to extract the method for the line that is fetching the single-
ton:
public function searchAc t i o n ($querySt r i n g , $type)
{

/ ∗ ∗ @var $solar ium \Solar ium_C l i e n t ∗ /
$solar ium = $th is −>getSo lar ium () ;
/ / . . .

}

protected function getSo lar ium ()
{

r e t u r n Solar ium : : get I nstance () ;
}

21https://qafoo.com/blog/107_refactoring_singletons_testability.html

c⃝ Qafoo GmbH 2010 - 2017

5.12 Refactoring Singleton Usage to get Testable Code 169

You now have two options for testability. The most obvious is to create a test class
that extends the original SearchService and overwrites the protected getSolarium
to return a mock. But it is not very flexible and additional classes necessary for
testing are not a good practice to follow.

Instead introduce a new instance variable and fetch the singleton only if this is
null, making use of the so called lazy initialization pattern:
private $solar ium ;

private function getSolar ium ()
{

i f ($ th is −>solar ium === n u l l) {
$ th i s −>solar ium = Solar ium : : get I nstance () ;

}
r e t u r n $ th is −>solar ium ;

}

public function setSo lar ium (\ So lar ium_Cl i e n t $solar ium)
{

$ th i s −>solar ium = $solar ium ;
}

Since you would want to use constructor injection for all mandatory dependencies
you could also introduce an optional constructor argument, like:
private $solar ium ;

public function __ cons t ruc t (\ So lar ium_Cl i e n t $solar ium = n u l l)
{

$ th i s −>solar ium = $solar ium ?: Solar ium : : get I nstance () ;
}

Now this code is already testable using mocks:
class SearchServ i ceTest extends PHPUn i t _Framework_TestCase
{

public function t e s tSearchF i l t e r ()
{

$solar iumMock = \Phake : : getMock (Solar iumCl i e n t : : class) ;
$serv ice = new SearchServ i ce ($solar iumMock) ;

\Phake : : when ($solar ium)−>createSe l e c t ()−>thenReturn (new \So lar ium_Query_S
e l e c t ($solar ium)) ;

$serv ice −>search (’ Foobar ’ , ’ some_type ’) ;

c⃝ Qafoo GmbH 2010 - 2017

170 Chapter 5. Refactoring

\Phake : : v e r i f y ($solar ium)−>query (\ Phake : : capture ($se lec t)) ;

/ / Perform asse r t i ons on $se lec t
}

}

If you perform this refactoring often you can entirely remove singletons from parts
of your code base and move towards a more testable dependency injection.

c⃝ Qafoo GmbH 2010 - 2017

6. Architecture

6.1 Why Architecture is Important

Kore Nordmann at 22. March, 20161

We experience that the system architectures of our customers grow more and
more complex. This is either because of scaling requirements or because devel-
opers like to try out new technologies like implementing Microservices in other lan-
guages then PHP (Node.js, Go, ...) or different storage technologies (MongoDB,
CouchDB, Redis, ...). Depending on the application it is also common to introduce
dedicated search services (Elasticsearch, Solr, ...), queueing systems (Beanstalk,
RabbitMQ, ZeroMQ, ...) or cache systems (Redis, Memcache, ...).

Often there are very valid reasons to do this but there is also an important
problem: You are creating a distributed system and they are really hard to get right
& operate. Every system spread across multiple nodes in a network is a distributed
system. A system consisting of a MySQL server and a PHP application server is
already distributed, but this is a well known problem for most teams. Architecture
decisions start to get critical once the data is distributed across multiple systems.
Why is this the case?

One of the things which are hardest to repair in existing systems are inconsisten-
cies of your data. Repairing this often even requires manual checks and sanitization
which, depending on the amount of data, can take up really large amounts of time.

1https://qafoo.com/blog/079_why_architecture_matters.html

c⃝ Qafoo GmbH 2010 - 2017

172 Chapter 6. Architecture

There are even studies 2 pointing out the costs of bugs in your architecture. If
they are discovered late, when the system is already in production, then fixing these
bugs can amplify the costs hundredfold. This is why we suggest to investigate and
analyze your architecture before distributing your data and be careful doing so.

What are the main points you should check when designing a system architec-
ture for a new project, during scaling an existing project or when introducing new
storage technologies (search, storage, cache, ...)? There are a couple of questions
we can ask ourselves:
• How can the consistency of data be ensured across multiple systems?
• How do we verify that the chosen systems fulfil their requirements?
• What are the technical and operational risks of newly introduced systems?
• How will the system handle latencies and failures of nodes?
• Is the overall application resilient against single node failures or how can this

be accomplished?
On top of that those decisions should be documented and valued by certain crite-
ria. There are even frameworks for documenting system architecture decisions and
risks, which you might want to follow like ATAM4. Important assessment points are:
• Consistency and security of data
• Performance (latency, transaction throughput)
• Modifiability (Applicability to new products, future change costs)
• Availability (Hardware failure, software bugs)

6.1.1 Summary
When introducing new systems you should be careful especially when you plan to
distribute your data across multiple nodes. Technology and architecture decisions
should not be made because some topic is hot right now (like Microservices) but
you should assess that the chosen system architecture actually fulfills your require-
ments and will be beneficial. Since there will be no perfect architecture for your use
case one should always document the respective benefits, drawbacks and reason-
ing why some kind of architecture was implemented.

2"Code Complete (2nd ed.)"3 by Steve McConnell (ISBN 0735619670)
4https://en.wikipedia.org/wiki/Special:BookSources/0735619670

c⃝ Qafoo GmbH 2010 - 2017

6.2 Scaling Constraints of Languages 173

6.2 Scaling Constraints of Languages

Kore Nordmann at 2. August, 20165

Micro-Services or any set of small services are common again right now. While
it can make a lot of sense to use a dedicated service for a well defined problem
those services are sometimes used just to play with a different server software.
While it is pretty obvious for most that selecting the right database is important the
same is true for selecting the right language (virtual machine) for the job.

There are different types of services or server applications where different types
of virtual machines (executing the opcodes / bytecode of the compiled source code)
make more or less sense. What are the criteria we should base such a decision on
and which language should we choose when?

When coming from a PHP background there are a couple of technology stacks
you come across regularly:
• PHP (Connected to your webserver through FPM or mod_php with Apache)
• Node.js (JavaScript)
• Go (different server paradigms possible, most is also true for stuff like Elixir/OTP

or Erlang/OTP)
• Java (doing the heavy crunching)

6.2.1 Why PHP?
Why did we start using PHP or how did it get so popular after all? One reason
is LCoDC$SS as described in Roy T. Fieldings dissertation6. The abbreviations
which describes the network architectural properties of HTTP / REST stands for:
• Layered (L)

We are using a protocol which allows layering. You can put a reverse caching
proxy or a load balancer in front of your application servers.

• Code on Demand (CoD)
We are delivering HTML, CSS (& JavaScript) which are interpreted by browsers.
The rendering does not happen on the server.

5https://qafoo.com/blog/088_scaling_constraints_of_languages.html
6Architectural Styles and the Design of Network-based Software Architectures7 by Roy T. Fielding

(2000)

c⃝ Qafoo GmbH 2010 - 2017

174 Chapter 6. Architecture

• Client-Server (CS)
The Browser (Client) interacts with a Server.
• Cached ($)

The result of certain HTTP verbs (GET, HEAD) can be cached. This speeds up
the web especially for static resources (images, ...).

• Stateless (S)
The client always transmits the full state which is required to generate the re-
sponse by the server. This might include session cookies. If your application
is implemented correctly any of your frontend servers (serving the same appli-
cation) can answer any request – no matter if the same client was connected
to a different server in an earlier request.

PHP was built for this. With it’s so called shared-nothing architecture it handles
stateless HTTP requests perfectly. The PHP engine throws away any state (vari-
ables, file pointers, database connections, ...) after returning the response. It is
almost impossible to build shared state between multiple requests (it is, of course,
but don’t do this).

This way PHP does not only use every CPU core on a server but usually it is
even trivial to add additional servers and just scale your frontend this way. Only
works if you respect the statelessness of HTTP requests, though.

6.2.2 So, Why Not PHP?
We just learned that PHP seems perfect for the web – does it serve all use cases
perfectly? No.

Besides HTTP browsers also speak other protocols like WebSocket. With Web-
Sockets you do not have the HTTP request response cycle but bi-directional per-
manent connections. PHP is not built for this.

Let’s start with a use case where WebSockets are commonly used: A chat. You
want that a message written by some user is immediately passed on to every other
user in the same chat. This requires state on the server (who is in the chat) as
well as passing messages between multiple connections. The incoming message
should be passed on to all connected users.

c⃝ Qafoo GmbH 2010 - 2017

6.2 Scaling Constraints of Languages 175

You can implement this with HTTP (long polling), PHP and some software man-
aging the shared state (database, in-memory storage) but it will be complicated and
doesn’t make much sense. This is where technologies like Node.js come into play.

Node.js
With Node.js it is really simple to develop your own server software. Using HTTP,
Websockets or anything else is pretty straight forward and you probably already
know the language from some frontend development. Using asynchronous IO
Node.js allows to do some work while waiting for the network or file system. This
allows to answer many requests per second while sharing some state – like for a
chat.

On the other hand does Node.js not really support multiple cores in a sensible
way. You can fork multiple processes or start multiple Node.js servers but you are
loosing the benefit of shared state immediately. And managing this state will get
hard and cumbersome again.

What I like to use Node.js for is quickly developing simple servers. For services
which require state and can easily be handled by a single CPU core, Node.js might
even be ready to serve production ready services.

Go
Developed by Google Go as a language is not as easy to pick up as Node.js when
you come from a pure web development background. This is even worse for lan-
guages like Elixir or Erlang.

On the other it is fairly easy to write servers with those languages and they
even utilize multiple CPU cores and still maintain shared state. If you need to scale
a WebSocket-based application you might want to take a look at those.

When a single server is not large enough any more you’ll have to come up with
intelligent ideas to distribute your service - but this is far beyond "micro" then.

Java
Java is commonly used for complex backend services or to integrate with existing
(legacy) stacks in companies. The Java VM actually allows to build both fast ap-
plications embracing the shared nothing nature of HTTP, but also servers with a
shared state. Since state is so easy to share, Java applications are often not scal-

c⃝ Qafoo GmbH 2010 - 2017

176 Chapter 6. Architecture

able beyond a single server. The Java VM on the other hand scales really well on
a single server.

6.2.3 Summary
Choosing the language (virtual machine) is not just a matter of taste. Because of
different paradigms the languages / virtual machines are build with the decision has
architectural consequences. There are also other factors like developer experience,
license costs or similar when it comes to choosing the right technology for your team
& application.

c⃝ Qafoo GmbH 2010 - 2017

6.3 How To Synchronize a Database With ElasticSearch? 177

6.3 How To Synchronize a Database With ElasticSearch?

Kore Nordmann at 14. June, 20168

Since search engines like Apache Solr and ElasticSearch are easy to use and
setup more and more applications are using them to index their content and make
it searchable by the user. After all the underlying Lucene index engine provides
far more powerful features then a plain MySQL full text search or similar solutions.
With Apache Solr and ElasticSearch you can enhance the performance and the
functionality of your website.

What we often stumble across, though, is the naiive approach of synchronizing
both data storages. It boils down to:
• Store data in database
• Store data in search index

The problem with this approach is, as in any distributed system, that both the first
and the second write will fail at some point. When the first write to the database
fails usually nothing is indexed. When the second write to the search index fails you
have content which exists but the user won’t be able to find it in the search index.

Depending on your domain this might not be a problem. But if a price update of a
product in an online shop fails you might actually loose money or at least customers
will be angry about the inconsistencies on your site. There will be similar problems
in other domains.

6.3.1 Transactions
The second idea of most developers now have is to build some kind of transaction
support across both storages. We know transactions well from our Computer Sci-
ence courses and relational database management systems, thus it is an intuitive
decision. With a transaction wrapped around you’ll get something like this:
t ry {

$database−>s to re ($document) ;
$search I ndex−>index ($document) ;

} catch (I ndexExcept ion $e) {
$database−>remove ($document) ;
/ / I nform user t h a t w r i t e f a i l e d

}

8https://qafoo.com/blog/086_how_to_synchronize_a_database_with_elastic_search.html

c⃝ Qafoo GmbH 2010 - 2017

178 Chapter 6. Architecture

This works, but it puts the burden of resubmitting the document and handling the
failure in your application on the user. Resubmitting a complex document might or
might not work in a sane way for your users. If the user edited a long and complex
text and all edits are lost because the search index failed to update – your user
might not be that happy.

6.3.2 Changes Feed
There is a better way to implement this, often used in systems where you have
one primary storage and any number of secondary storages. In this scenario your
primary storage defines the state of your system – it is commonly called "Source
Of Truth". In this example your database knows the definitive truth since everything
is first stored there. Any other system, like your search index or caches should be
updated based on the state in the database.

What we want to do is passing every change in the database on to the search
index. A changes feed can do this. Some databases like CouchDB9 offer this out
of the box for every document, but how can this done with a relational database
management system like MySQL? And how can the data be passed on safely to
the search index? The process behind this can be illustrated by this simplified
sequence diagram:

9http://guide.couchdb.org/draft/notifications.html

c⃝ Qafoo GmbH 2010 - 2017

6.3 How To Synchronize a Database With ElasticSearch? 179

Source
Of Truth

Search
IndexScript

Last?

Sequence Number

Updates Since?

update[]

update[]

Sequence number
MUST increment

strictly monotonic

Revisions MUST NOT
be stored if an
update fails.

The idea behind this is that we start asking the target system (search index)
what document it already knows. For this we need some kind of sequence number
or revision – which MUST be sortable & strictly monotonic10 to make sure that we
do not loose any updates. With the last sequence number returned from the target
system we can now load all or just a batch of changes from our database. These
changes are then pushed to the search index. This sounds simple, right? But there
are two questions remaining:
• How to I get MySQL to produce correct sequence numbers?
• How can I store the last sequence number in the search index?

6.3.3 Generating Correct Sequence Numbers
This is the hardest part with the described architectural pattern and a little bit harder
to get right then one would assume in the first place. Every sequence number
MUST be bigger then the last sequence number otherwise changes can be lost.

10https://en.wikipedia.org/wiki/Monotonic_function

c⃝ Qafoo GmbH 2010 - 2017

180 Chapter 6. Architecture

The easiest way to implement this is an additional table with the following schema:

CREATE TABLE changes (
sequence_number INT NOT NULL AUTO_ INCREMENT ,
document_ i d INT NOT NULL ,
PRIMARY KEY (sequence_number)

) ;

The document_id would reference a data set in another table – if you want you
can even define a foreign key relation with the data indexed in the search index.
Defining the sequence_number number as AUTO_INCREMENT ensures that MySQL
takes care of incrementing the sequence number.

With every change to a document we now also append a row to the changes
table. Do this inside one transaction. Afterwards we can just query the changes
like:

SELECT
sequence_number , document . ∗

FROM changes
JOIN −− . . . −−
WHERE sequence_number > : s ince
ORDER BY sequence_number ASC
L IMI T 0 , 100;

This would request the next 100 changes and join them with the actual data.
This table will grow fast you say? You’re right.
But this can be optimized. The only thing we must keep in this table is the latest

sequence number of each document_id so that we can run a clean import in the
correct order. If there are dependencies between your documents this can get a
little more complex but can still be solved.

Unnecessary at first, but at some point you might also have to handle the case
where the sequence_number overflows.

6.3.4 Storing The Sequence Number
The sequence number must not be increased in the search index if no document
was stored. Otherwise we would loose the document since the next request for new
documents to the database will use the already increased sequence number.

c⃝ Qafoo GmbH 2010 - 2017

6.3 How To Synchronize a Database With ElasticSearch? 181

Since systems like ElasticSearch do not support transaction we should store
the sequence number associated with the update right in the document. Using a
MAX query11 and an index on the sequence number field we can still fetch the last
sequence number from the search index.

Another option would be to store the last sequence number in a special docu-
ment or somewhere else like the file system. If ElasticSearch now loses some or
all documents we will not be aware of it and some documents will again be miss-
ing from the search index. Solutions like ElasticSearch tend to only persist their in
memory data every few seconds and if the node crashes in the mean time they will
loose some data. The described pattern ensures the index is brought up to date
once the node recovers. Even with a complete data loss the architectural pattern
described here will automatically ensure the entire index is rebuilt correctly.

6.3.5 Conclusion
The architectural pattern discussed in this blog post is nothing we invented. It is
actually used by replication mechanisms of databases or other storage systems.
We just showed you an adapted version for the concrete use case of synchronizing
contents between a database and ElasticSearch.

The shown pattern is stable and resilient against failures. If ElasticSearch is
not available while storing the data it will catch up later. Even longer down times
or complete node failures will be automatically resolved. The mechanism is also
called eventual consistency because of this.

The problem with this approach is that you’ll need an extra script or cron job to
synchronize both systems. The search index will also always lag slightly behind the
database, depending on how often the script is run.

We generally advise to use this pattern to keep multiple system in sync when
there is one source of truth. The pattern does not work when data is written to
multiple different nodes.

11https://qa.fo/book-search-aggregations-metrics-max-aggregation

c⃝ Qafoo GmbH 2010 - 2017

182 Chapter 6. Architecture

6.4 Common Bottlenecks in Performance Tests

Kore Nordmann at 19. April, 201612

Most developers by now internalized that we should not invest time in optimiza-
tions before we know what happens exactly. Or as Donald Knuth wrote:

Programmers waste enormous amounts of time thinking about, or wor-
rying about, the speed of noncritical parts of their programs, and these
attempts at efficiency actually have a strong negative impact when de-
bugging and maintenance are considered. 13

This is true for optimizations in your PHP code but also for optimizations regarding
your infrastructure. We should measure before we try to optimize and waste time.
When it comes to the assumed performance problems in your system architecture
most people guess the root cause will be the database. This might be true but in
most projects we put under load it proved to be false.

So, how can we figure out where the problems are located in our stack?
You need to test the performance, as always. For optimizing your PHP scripts

you’d use XDebug and KCacheGrind or something like Tideways15. You’d trigger a
single request and see what is slow in there and optimize that part.

6.4.1 System Test Setup
It is slightly more complicated to test your full stack. In the optimal case you simulate
the real user behaviour. It is definitely not sufficient to just run ab or siege against
your front page. For an online shop typical user tasks could be:
• Browsing the catalogue (random browser)
• Product searches
• User sign up & login
• Order checkout

We usually discuss the common tasks on a website with the owner of the web-
site. Then we discuss the numbers for each of those task groups which we should

12https://qafoo.com/blog/082_common_bottlenecks_in_performance_tests.html
13Computing Surveys (PDF)14, Vol 6, No 4, December 1974
15https://jmeter.apache.org/

c⃝ Qafoo GmbH 2010 - 2017

6.4 Common Bottlenecks in Performance Tests 183

simulate to mimic a certain scenario. With this information a jMeter16 test can be
authored simulating the real behaviour of your users. After a test run you can com-
pare the access logs of the test with common access logs from your application to
verify you simulated the right thing – if those logs are available.

6.4.2 Stack Analysis
Once you wrote sufficiently generic tests you will be able to simulate larger numbers
of users accessing your website – some may call it DDOS’ing17 your own page.
When running these tests you can now watch all metrics for your system closely
and you’ll be able to identify the performance problems in your stack.

There are couple of tools which might help you here, but the list is far from
extensive and depends a lot on the concrete application:
• vmstat watches CPU usage, free memory and other system metrics
• iftop shows if network performance is an issue
• Tideways18 or XHProf for live analysis of your application servers

On top of that you should definitely watch the error logs on all involved systems.

6.4.3 It is Not Always The Database
The root cause for performance problems on websites we put under test weren’t
rooted in the database for most of our test runs:
• Varnish & Edge Side Includes (ESI)

We tested a large online shop which used ESI so extensively that the appli-
cation servers running PHP were actually the problem. The used framework
had a high bootstrap time so that this was the most urgent performance im-
pediment. The database wasn’t even sweating.

• Network File System (NFS) locking issues
Once you put a high load on a server sub systems will behave differently.
NFS, for example, tries to implement some locking for a distributed file system.
When multiple servers are accessing the same set of files it can stall your

16https://qa.fo/book-Denial-of-service_attack
17https://tideways.io
18https://qafoo.com/services/workshops/performance.html

c⃝ Qafoo GmbH 2010 - 2017

184 Chapter 6. Architecture

application entirely. Something you will almost never hit during development
but in load tests or later in production.

There are even configuration issues which only occur under load and degrade your
performance more then any slow query will do.
• Broken server configurations

In one case a web hoster who claimed to be specialized on cluster setups
provided us with a setup where we ran the tests on. The cluster allowed a
lot more FPM children to spawn then database connections. Once put un-
der load the MySQL server rejected most of the incoming connections which
meant the application failed hard.

• Opcode cache failures
Wrong Opcode cache (APC, eAccelerator, ...) configuration can even degrade
PHP performance. But this is also something you will not notice without
putting the system under load. So you’ll only notice this when many cus-
tomers try to access your website or during a load test.

6.4.4 Summary
If you want to ensure the application performs even under load you should simulate
this load before going live. The problems will usually not be where you thought they
would be. Test, measure and analyze. The time invested in a load test will be a far
more efficient investment then random optimizations based on guesswork.

Kore will talk about "Packt Mein Shop das?" ("Will My Shop Manage This?") at
Oxid Commons19 in Freiburg, Germany on 02.06.2016 about load testing.

19https://qa.fo/book-p261-knuth

c⃝ Qafoo GmbH 2010 - 2017

6.5 Embedding REST Entities 185

6.5 Embedding REST Entities

Tobias Schlitt at 13. June, 201320

During my talk at IPC Spring21 I showed an approach for embedding entities in
REST responses. This methodology might be useful if the standard use-case for
your API is to request multiple related entities together. The downside of such an
approach is the raised complexity of caching and especially purging logic. In this
blog post I will further elaborate on the approach of resource embedding.

6.5.1 Entities
As an example I chose the resources Product and Category from the e-commerce
domain. A product entity could be encoded through the media type application/
vnd.com.example.product+xml as shown as follows:

<?xml vers ion ="1 .0 " encoding ="UTF−8"?>
<product

xmlns =" urn : com. example . product "
xmlns : atom=" h t t p : / /www.w3 . org /2005/Atom">
<atom : l i n k r e l =" s e l f "

type =" a p p l i c a t i o n / vnd . com. example . product+xml "
h re f =" h t t p : / / example . com/ products /23 " / >

<name>Glow Stone Driveway </name>
< desc r i p t i on >Awesome . . . < / desc r i p t i on >
<atom : l i n k r e l =" c o l l e c t i o n "

type =" a p p l i c a t i o n / vnd . com. example . category+xml "
h re f =" h t t p : / / example . com/ ca tegor ies / geek_ toys " / >

<!−− More l i n k s . . . −−>
</ product >

A product has a name and a description. Besides that, the representation pro-
vides Atom22 links as hyper media controls, using relations as recommended by
the IANA23.

Corresponding, the following example shows an encoded category entity:
<?xml vers ion ="1 .0 " encoding ="UTF−8"?>
<category

20https://qafoo.com/blog/048_embedding_rest_entities.html
21https://qafoo.com/blog/047_pragmatic_rest_bdd_ipc.html
22https://tools.ietf.org/html/rfc4287
23https://qa.fo/book-link-relations

c⃝ Qafoo GmbH 2010 - 2017

186 Chapter 6. Architecture

xmlns =" urn : com. example . category "
xmlns : atom=" h t t p : / /www.w3 . org /2005/Atom">
<atom : l i n k r e l =" s e l f "

type =" a p p l i c a t i o n / vnd . com. example . category+xml "
h re f =" h t t p : / / example . com/ ca tegor ies / geek_ toys " / >

<name>Geek Toys </name>
<products >

<atom : l i n k r e l =" i tem "
type =" a p p l i c a t i o n / vnd . com. example . product+xml "
h re f =" h t t p : / / example . com/ products /23 " / >

<!−− . . . −−>
</ products >
<!−− L inks : overview , paging , so r t i ng , . . . −−>

</ category >

Note that here is a list of product items linked from a category, which could for
example be paged, sorted, filtered and so on using URL parameters.

6.5.2 The Use-Case
Imagine the major use-case for the API is to retrieve the top 20 products from a
category. To retrieve these together with product details, a client needs 21 GET
requests on the first go. For each subsequent execution of the use case, the 21
requests must be repeated, although the response might be that the entities did not
change.

Alternatively, the server can set expiry times for the entities, so that clients do
not need to re-check that frequently. But such time spans are hard to calculate or
even guess and can easily lead to stale caches.

So, depending on the requirements for data accuracy and clients, this might
easily lead to a huge number of requests.

6.5.3 Resource Embedding with HAL
A promising idea to solve the named issue is to deliver resources in an embedded
way while making explicit that the delivered data partially belongs to a different re-
source that can be found at a different URI. Searching the web reveals that there
is already an approach for this out there, which is called Hypertext Application Lan-
guage (HAL)24.

24http://stateless.co/hal_specification.html

c⃝ Qafoo GmbH 2010 - 2017

6.5 Embedding REST Entities 187

Embedding products into a category using a HAL encoding is shown in the
following example:
<?xml vers ion ="1 .0 " encoding ="UTF−8"?>
<resource h re f = " / ca tegor ies / geek_ toys ">

<name>Geek Toys </name>
<products >

<resource r e l =" product " h re f = " / products /23" >
<name>Glow Stone Driveway </name>
< desc r i p t i on >Awesome . . . < / desc r i p t i on >
< l i n k r e l =" category " h re f = " / ca tegor ies / geek_ toys " / >

</ resource >
<!−− . . . −−>

</ products >
</ resource >

HAL encodes any resource using the <resource> tag and has its own <link> tag.
As can be seen, the products which are part of a category are embedded into its
representation, but the categories that are assigned to a product are linked.

While this approach appears charming at first glance, it has some flaws:
First of all, HAL is meant to encode all entities in a standardized manner of a

<resource> tag. That conflicts with one of the fundamental ideas of hyper media:
to encode an entity in a semantically meaningful way.

Second, the HAL specification does not provide its own namespace, making it
ugly to re-use among other XML languages. Finally, the specification introduces its
own <link> element instead of re-using existing standards like Atom25 or XLink26.

6.5.4 Better Resource Embedding
Since the idea of HAL is essentially quite nice, I made up my mind to make the
approach more standards-compliant and to mitigate the named issues. The basic
idea is to re-use the Atom <link> elements, as in the original drafts, and embed
resources as their children:
<?xml vers ion ="1 .0 " encoding ="UTF−8"?>
<category xmlns = " . . . " xmlns : atom = " . . . "

xmlns : p=" urn : com. example . product "><!−− . . . −−>
<products >

25https://tools.ietf.org/html/rfc4287
26http://www.w3.org/TR/xlink/

c⃝ Qafoo GmbH 2010 - 2017

188 Chapter 6. Architecture

<atom : l i n k r e l =" i tem " type = " . . . " h re f = " . . . " >
<p : product ><!−− . . . −−>

<p : name>Glow Stone Driveway </p : name>
<p : desc r i p t i on >Awesome . . . < / p : desc r i p t i on >
<atom : l i n k r e l =" c o l l e c t i o n "

type =" a p p l i c a t i o n / vnd . com. example . category+xml "
h re f =" h t t p : / / example . com/ ca tegor ies / geek_ toys " / >

</p : product >
</atom : l i n k >
<!−− . . . −−>

</ products >
</ category >

This example left out some unimportant details, it is basically derived from the orig-
inal example in this post. However, in addition to the category namespace, the
namespace for encoding product entities is also imported using the shortcut p. In-
side of the <atom:link> for a product, the entity representation itself is embedded
using this namespace.

Naturally, the mentioned drawbacks of HAL are mitigated: Clear semantics are
kept, each media type ships with a decent XML namespace and a standard <link
> element is used (Atom). Luckily, the Atom specs allow any external element to
occur inside of <atom:link> so embedding the product entity is perfectly valid.

Furthermore, if clearly documented, that would allow the REST provider to trans-
parently switch on and off embedding of specific resources. A client then must not
rely on embedded resources and must be capable of fetching them through their
link references. However, if available, it can use the embedded information to cache
an embedded resource transparently.

6.5.5 Bottom Line
Of course, resource embedding is nothing I would recommend to you in general. It
can be considered a hack for special use-cases. One of its drawbacks is to weaken
the caching capabilities RESTful web APIs provide: The category resource must
be re-fetched every time one of the embedded products changes. This of course
also affects your application’s caching logic, because you need to purge caches
accordingly.

So, if you think about making use of embedded resources, make sure you ana-
lyzed the use-cases of your API carefully and keep the hack as local as possible.

c⃝ Qafoo GmbH 2010 - 2017

7. Workflow

7.1 Coding in Katas

Tobias Schlitt at 18. February, 20131

In almost any kind of sports you hone your skills by repeating a small piece
of practice over and over again. Pretty much the same works for learning to play
a musical instrument. The idea of Code Katas applies this simple but effective
method of exercise to the world of programming.

A programmer’s everyday life mostly consists of a single goal: getting things
done. New features are to be shipped, bugs to be found and fixed. While you can
certainly learn many new things thereby, this scenario lacks two essential factors
for effective learning and self-development: Time to try and possibility to fail. Ev-
eryday work is typically not the situation where taking a risk and failing by intention
is desired.

So, if you want to grow beyond yourself, you need to create an environment for
your practice where failure is allowed. Starting a spare time project or even an open
source project can help there. But finding a sufficiently clear and defined task to
practice your skills is hard. That’s where the idea of Code Katas jumps in:

Kata (or literally: "form") is a Japanese word describing detailed chore-
ographed patterns of movements practiced either solo or in pairs.

1https://qafoo.com/blog/034_coding_in_katas.html

c⃝ Qafoo GmbH 2010 - 2017

190 Chapter 7. Workflow

-- https://en.wikipedia.org/wiki/Kata

A Code Kata is basically a well-defined, small task to be solved by programming.
The time to solve a Kata should be reasonable to allow you to get started rapidly
and to see first results quickly. However, you usually set yourself a time limit, say 1
hour, and stop precisely when the limit is reached. The actual result of this work is
only a secondary concern, same applies to finishing the task. What counts is the
actual practice. Pushed even further: You might actually want to throw away the
code later.

The important part is to reflect on what you did: How did you approach the
problem? Where did your approach lead you? What were the problems? What
went well? Ideally, ask another developer for feedback or, if possible, directly work
in pairs to learn from each other.

And when you are done: Start over from scratch. Maybe directly after finishing
the first iteration or a week later. Do the same Kata again. Try a different approach
or try the same and see where it leads you after your reflection. Reflect again and
set yourself a goal for the next iteration.

With these characteristics, a Kata gives you a good basis to try out something
new, to let off steam and to practice your skills as a programmer. Maybe you could
try a purely test driven approach now. Maybe you will think about a complete OO
model upfront then. And maybe you could apply Object Calisthenics in another
iteration.

One of the most famous Code Katas is the Bowling Game Kata2 by Robert C.
Martin. The task of this Kata is to implement bowling with its simple rules. Not a
tough challenge, but something with a connection to reality, clearly structured and
well-defined. Uncle Bob used this Kata to visualize the methodology of Test Driven
Development.

At Qafoo we tend to use Katas more and more frequently in our trainings for
practice. Of course, Katas can neither replace practices derived from the real world
nor working on own code. But they offer our training attendees the possibility to
perform quick practices in-between theoretical lectures and to reflect on different
approaches to certain problems in practical trying.

2https://qa.fo/book-ArticleS_UncleBob

c⃝ Qafoo GmbH 2010 - 2017

https://en.wikipedia.org/wiki/Kata

7.1 Coding in Katas 191

There is a Kata Catalogue3 where you can find quite some Katas. Tell us about
your experience with Coding Katas!

3http://codingdojo.org/cgi-bin/wiki.pl?KataCatalogue

c⃝ Qafoo GmbH 2010 - 2017

192 Chapter 7. Workflow

7.2 Why you need infrastructure and deployment automation

Benjamin Eberlei at 28. February, 20144

The amount of time wasted on setup, synchronization and deployment of ap-
plications is often ignored by teams and managers. Manual server management
and application deployment are a huge waste of time and ultimately money. In ad-
dition, manually performing these tasks is often prone to error and a big risk for
uninterrupted uptime of production.

Software quality does not stop with tests and good CodeSniffer and PHP Mess
Detector scores. The deployment and setup is equally important to the quality of
an application. From our experience, this is a field where many teams could still
achieve huge productivity gains.

As a yardstick for the optimal solution, we can take a look at what the Joel test5

has to say about deployment and infrastructure and add some of our own additional
requirements (some from the OpsReportCard6):
• Can you make a build in one step?
• Do you make daily builds?
• Do you use configuration management tools to automate infrastructure?
• Is the development setup documented and automated?
• Can you rollout and rollback deployments in one step?
• Can applications be deployed to a new server setup without changes to the

code?
I want to discuss these bullets in short paragraphs and mention why solving these
problems allows you to save time and money, if done properly.

7.2.1 Can you make a build in one step?
One of the Joel test requirements is building an application in one step. In the PHP
world that means that - by executing one command or pushing a button in the CI
system - a process is triggered that creates a running version of your project.

What does a complete build include?

4https://qafoo.com/blog/065_infrastructure_automation.html
5http://www.joelonsoftware.com/articles/fog0000000043.html
6http://www.opsreportcard.com/

c⃝ Qafoo GmbH 2010 - 2017

7.2 Why you need infrastructure and deployment automation 193

• Code deployment to the appropriate machines
• Configuration
• Database setup or migrations
• Service location
• Cache Warming

Tools to automate code deplyoment include Bashscript + rsync7 + symlinks, Capis-
trano8 (with Capifony plugin for Symfony), Ansible9 or Ant10. It is perfectly fine to
automate with bash scripts, some automation is always better than none. How-
ever, the amount of boilerplate with Bash is often quite big compared to the other
solutions that explicitly handle most of the deployment issues already. For exam-
ple, we regularly implement a combination of Ansible and Ant deployment for our
customers.

For database migrations there are tools such as DBDeploy11, Liquibase12 or
FlywayDB13. These can normally be integrated and automated during deployment
via Capistrano, Ansible or Ant. This requires the database schema to be always
backwards compatible, something to carefully watch out for.

A compelling argument for introducing a reliable one-step build is that it can be
safely triggered by any member of the team and therefore reduces the possibility of
errors drastically.

7.2.2 Do you make daily builds?
If you don’t have a one-step deployment, it is very unlikely that you are able to make
daily builds in a cost-effective way. Without daily builds you lose one benefit of PHP,
the rapid pace of development.

You lose money because you might be slower with new features than your
comptetitor or because you cannot remove costly bugs from your software fast
enough.

7http://rsync.samba.org/
8http://capistranorb.com/
9http://www.ansible.com/home

10http://ant.apache.org/
11http://dbdeploy.com/
12http://www.liquibase.org/
13http://flywaydb.org

c⃝ Qafoo GmbH 2010 - 2017

194 Chapter 7. Workflow

7.2.3 Do you use configuration management tools to automate infrastructure?
When running many different projects, all with their own unique server setup, you
can easily see how this will cost you time and money to maintain all these servers.
Automating server maintenance helps a lot.

CFengine14 was the first tool that automated the setup of servers and it was re-
leased in 1993. Competitors such as Puppet, Chef and Ansible are much younger,
but still old enough to be considered stable and frankly there is no excuse not to
use them anymore.

Configuration management tools all solve the problem of consistenly automating
the setup of new and old servers. The goal is to set up all servers in a similar,
consistent way by the use of automation instead of manual SSH’ing, package and
configuration management.

Tasks you want to automate with configuration management:
• Deployment of SSH authorized keys
• Security updates of packages
• Management of log files (logrotate, fetching, aggregating)
• PHP, Apache/Nginx, MySQL, NoSQL, ... configuration
• Updates of commonly used software such as Wordpress, TYPO3, Drupal,

Shopware, Oxid and their third party extensions.
Recently we recommend using Ansible15 to our customers, because it is so much
easier to understand than other tools.

Puppet16 is much more complex to understand initially from our own experience
and also has a much higher learning curve.

7.2.4 Is the development setup documented and automated?
There are two obvious reasons why not automating the setup of development ma-
chine is dangerous:
• Bugs and problems of the category "it works on my machine" are much more

likely to happen, especially when development and production machines sig-
nificantly differ (PHP 5.2 vs 5.3 was such a difference).

14http://cfengine.com/
15http://www.ansible.com/home
16http://puppetlabs.com/

c⃝ Qafoo GmbH 2010 - 2017

7.2 Why you need infrastructure and deployment automation 195

• You cannot easily introduce new developers to new projects because it always
requires a huge amount of time. This contributes to knowledge silos and
significantly increases the bus factor of projects.

At a time where php applications use much more services than just the LAMP stack,
it is vital that every developer has the same production-like environment to develop
on. This can be achieved with virtual machines and tools like Vagrant17. Combined
with configuration management tools like Puppet18, Chef19 or Ansible20, the tools
for easy setup of development machines exist and are stable.

A more detailed post from us on Vagrant will be forthcoming in the next weeks.

7.2.5 Can you rollout and rollback deployments in one step?
Nothing always works and for deployments of applications this is even more true.
Not accounting for failure is carless. Failure during deployments is not a black swan
event, it’s real and probably in the >1% likelihood.

You can reduce the cost of failure by being able to rollback to an old, working
version.

You need a deployment system where several versions of your code are avail-
able on the production machines and where you can switch between them with a
single atomic operation. This also requires asset compilation and database schema
migrations that are backwards and forwards compatible.

7.2.6 Can applications be deployed to a new server setup without changes to the
code?
One common mistake in application development is hardcoding configuration vari-
ables. Especially in the early development of greenfield projects, too much configu-
ration got hardcoded into the code. The side effect of this is that you will probably
lose a lot of time once the first real production setup should be deployed. Hard-
coded configuration variables also often complicate the installation of the applica-

17http://www.vagrantup.com/
18http://puppetlabs.com/
19http://www.getchef.com/chef/
20http://www.ansible.com/home

c⃝ Qafoo GmbH 2010 - 2017

196 Chapter 7. Workflow

tion on different servers. For continous integration, staging machines or for multiple
tenant setups, however, this is extremly important.

Not properly taking care of application configuration will make deployment much
harder.

7.2.7 Conclusion
Not automating deployment and infrastructure is expensive and can cause frequent
human errors. This article highlighted several deployment problems and discussed
tools and procedures to fix them. In the next years, the question of infrastructure
automation will become even more important, as automation has positive effects
on time to market and allows scaling development teams up. As usual, companies
that don’t automate will have a hard time competing with companies that do.

If you need help automating your infrastructure and deployment, don’t hesitate
to contact us21. We can help you with the details and problems that commonly
occur and we will make sure you get started very quickly.

21https://qafoo.com/contact.html

c⃝ Qafoo GmbH 2010 - 2017

Impressum

Erstellt und vertrieben wird dieses Buch durch:

Qafoo Gesellschaft mit beschränkter Haftung
Büngelerstr. 64
46539 Dinslaken

E-Mail: contact@qafoo.com
Telefon: +49 (0)209 40501252
Registergericht: Amtsgericht Duisburg
Registernummer: HRB 27078

Umsatzsteuer-Identifikationsnummer gem. §27a UStG: DE272316452
Inhaltlich Verantwortlicher: Kore Nordmann (Anschrift, s.o.)

Vertretungsberechtigte Geschäftsführer:
• Kore Nordmann
• Manuel Pichler
• Tobias Schlitt

	1 Introduction
	1.1 About This Book
	1.2 About Qafoo
	1.3 The Authors
	1.3.1 Kore Nordmann
	1.3.2 Tobias Schlitt
	1.3.3 Benjamin Eberlei
	1.3.4 Manuel Pichler

	2 Clean Code
	2.1 Developers Life is a Trade-Off
	2.1.1 The NoSQL Dilemma
	2.1.2 Overengineered State Machines
	2.1.3 Hack Hack Hack
	2.1.4 Bottom Line

	2.2 Never Use null
	2.2.1 What it is Used For
	2.2.2 null as Return Value
	2.2.3 Summary

	2.3 Struct classes in PHP
	2.3.1 Implementation
	2.3.2 Copy on write
	2.3.3 Summary

	3 Object Oriented Design
	3.1 Learn OOD - to unlearn it again
	3.1.1 Learning OOD the classical way
	3.1.2 OOD in fast pace and agile
	3.1.3 Refactoring is the key
	3.1.4 Learning OOD to unlearn it
	3.1.5 Conclusion / TL;DR

	3.2 Object lifecycle control
	3.2.1 Why is this bad?
	3.2.2 How can I solve this?
	3.2.3 Conclusion

	3.3 Ducks Do Not Type
	3.3.1 Duck Typing
	3.3.2 Prototyping
	3.3.3 Using Foreign Code
	3.3.4 Package Visibility
	3.3.5 Conclusion

	3.4 Abstract Classes vs. Interfaces
	3.4.1 Definitions
	3.4.2 Classes are Types
	3.4.3 interface
	3.4.4 Telling Apart
	3.4.5 But...
	3.4.6 Examples & Hints
	3.4.7 tl;dr

	3.5 ContainerAware Considered Harmful
	3.5.1 Background
	3.5.2 Issues
	3.5.3 Conclusion

	3.6 Code Reuse By Inheritance
	3.6.1 Inheritance
	3.6.2 Active Record
	3.6.3 A Smaller Example
	3.6.4 The Helper Method
	3.6.5 Testing Private Methods
	3.6.6 Depth Of Inheritance Tree (DIT)
	3.6.7 Summary

	3.7 Utilize Dynamic Dispatch
	3.8 When to Abstract?
	3.8.1 Summary

	4 Testing
	4.1 Finding the right Test-Mix
	4.1.1 The Test-Mix Tradeoff
	4.1.2 Conclusion

	4.2 Mocking with Phake
	4.2.1 Test Doubles Explained
	4.2.2 Benefits of Test Doubles
	4.2.3 Introduction to Phake
	4.2.4 Conclusion

	4.3 Testing Effects of Commands With Phake::capture()
	4.4 Using Mink in PHPUnit
	4.5 Introduction To Page Objects
	4.5.1 Groundwork
	4.5.2 A First Test
	4.5.3 Refactoring The Frontend
	4.5.4 Problems With Page Objects
	4.5.5 Conclusion

	4.6 Database Tests With PHPUnit
	4.6.1 Removing Data versus Schema Reset
	4.6.2 Point of Data Reset
	4.6.3 Mocking the Database Away
	4.6.4 Conclusion

	4.7 Database Fixture Setup in PHPUnit
	4.7.1 Dump & Insert Live Data
	4.7.2 Base Data
	4.7.3 Test Data
	4.7.4 Conclusion

	4.8 Using Traits With PHPUnit
	4.8.1 An Example
	4.8.2 Traits
	4.8.3 Whats The Difference?
	4.8.4 Summary

	4.9 Testing the Untestable
	4.9.1 So What Can We Do?

	4.10 Outside-In Testing and the Adapter and Facade Patterns
	4.10.1 Conclusion

	4.11 Behavior Driven Development
	4.11.1 Example
	4.11.2 Behat
	4.11.3 Rationale
	4.11.4 Conclusion

	4.12 Code Coverage with Behat
	4.12.1 Preparation
	4.12.2 Collecting Code Coverage
	4.12.3 Running Tests
	4.12.4 Conclusion

	4.13 Testing Micro Services
	4.14 Five Tips to Improve Your Unit Testing
	4.14.1 1. Be Pragmatic About a "Unit"
	4.14.2 2. Test Where the Logic is
	4.14.3 3. Continuously Refactor Test Code
	4.14.4 4. Build Your Own Set of Utilities
	4.14.5 5. Always Write Tests for Bugs

	5 Refactoring
	5.1 Loving Legacy Code
	5.2 Refactoring with the Advanced Boy Scout Rule
	5.3 Extended Definition Of Done
	5.3.1 Conclusion

	5.4 How to Refactor Without Breaking Things
	5.4.1 Tests
	5.4.2 Baby Steps

	5.5 Getting Rid of static
	5.5.1 The Problem
	5.5.2 Step 1: Replaceable Singletons
	5.5.3 Step 2: Service Locator
	5.5.4 Step 3: Dependency Injection
	5.5.5 Conclusion

	5.6 Refactoring Should not Only be a Ticket
	5.7 Extracting Data Objects
	5.7.1 Too Many Parameters
	5.7.2 Associative Arrays
	5.7.3 Smooth Migration

	5.8 Basic Refactoring Techniques: Extract Method
	5.8.1 Step 1: Identify code fragment to extract
	5.8.2 Step 2: Create empty method and copy code
	5.8.3 Step 3: Identify undeclared variables that must be arguments
	5.8.4 Step 4: Identify variables that are still used in old method
	5.8.5 Step 5: Call new method from original method
	5.8.6 Risky Extract Method Checklist
	5.8.7 Fin

	5.9 How to Perform Extract Service Refactoring When You Don't Have Tests
	5.9.1 Step 1: Create Class and Copy Method
	5.9.2 Step 2: Fix Visibility, Namespace, Use and Autoloading
	5.9.3 Step 3: Check for Instance Variable Usage
	5.9.4 Step 4: Use New Class Inline
	5.9.5 Step 5: Inline Method
	5.9.6 Step 6: Move Instantiation into Constructor or Setter
	5.9.7 Step 7: Cleanup Dependency Injection
	5.9.8 Fin

	5.10 How You Can Successfully Ship New Code in a Legacy Codebase
	5.10.1 Example 1: Replacing the Backend in a CMS
	5.10.2 Example 2: Rewriting a submodule without changing public API
	5.10.3 Example 3: Github reimplements Merge button
	5.10.4 The Process
	5.10.5 Conclusion

	5.11 Extracting Value Objects
	5.12 Refactoring Singleton Usage to get Testable Code

	6 Architecture
	6.1 Why Architecture is Important
	6.1.1 Summary

	6.2 Scaling Constraints of Languages
	6.2.1 Why PHP?
	6.2.2 So, Why Not PHP?
	6.2.3 Summary

	6.3 How To Synchronize a Database With ElasticSearch?
	6.3.1 Transactions
	6.3.2 Changes Feed
	6.3.3 Generating Correct Sequence Numbers
	6.3.4 Storing The Sequence Number
	6.3.5 Conclusion

	6.4 Common Bottlenecks in Performance Tests
	6.4.1 System Test Setup
	6.4.2 Stack Analysis
	6.4.3 It is Not Always The Database
	6.4.4 Summary

	6.5 Embedding REST Entities
	6.5.1 Entities
	6.5.2 The Use-Case
	6.5.3 Resource Embedding with HAL
	6.5.4 Better Resource Embedding
	6.5.5 Bottom Line

	7 Workflow
	7.1 Coding in Katas
	7.2 Why you need infrastructure and deployment automation
	7.2.1 Can you make a build in one step?
	7.2.2 Do you make daily builds?
	7.2.3 Do you use configuration management tools to automate infrastructure?
	7.2.4 Is the development setup documented and automated?
	7.2.5 Can you rollout and rollback deployments in one step?
	7.2.6 Can applications be deployed to a new server setup without changes to the code?
	7.2.7 Conclusion

